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Abstract—Multicast benefits data center group communica-
tions in saving network bandwidth and increasing application
throughput. However, it is challenging to scale Multicast to
support tens of thousands of concurrent group communications
due to limited forwarding table memory space in the switches,
particularly the low-end ones commonly used in modern data
centers. Bloom Filter is an efficient tool to compress the Multicast
forwarding table, but significant traffic leakage may occur when
group membership testing is false positive.

To reduce the Multicast traffic leakage, in this paper we bring
forward a novel multi-class Bloom Filter (MBF), which extends
the standard Bloom Filter by embracing element uncertainty.
Specifically, MBF sets the number of hash functions in a per-
element level, based on the probability for each Multicast group
to be inserted into the Bloom Filter. We design a simple yet
effective algorithm to calculate the number of hash functions
for each Multicast group. We have prototyped a software based
MBF forwarding engine on the Linux platform. Simulation
and prototype evaluation results demonstrate that MBF can
significantly reduce Multicast traffic leakage compared to the
standard Bloom Filter, while causing little system overhead.

I. INTRODUCTION

Data center is the key infrastructure for cloud computing.
Servers, with a scale of tens of thousands, or even hundreds of
thousands, are interconnected to run distributed computations
for cloud services. As the network bandwidth has become
a bottleneck for data center distributed computations [1],
recently many advanced network topologies are proposed to
improve the network capacity, such as DCell [2], BCube [3],
Fat-Tree [4], VL2 [5] and FiConn [6]. These new proposals
use much more switches to form the network infrastructure
than the current practice of tree topology.

Besides increasing the network capacity of data centers, it
is equally important to make efficient use of the available
network bandwidth. In this paper we focus on group com-
munication, which is commonly needed to support data center
computations, such as redirecting search queries to indexing
servers [7], replicating file chunks in distributed file system-
s [8], [9], as well as distributing executable binaries to a set of
servers for Map-Reduction like cooperative computations [8],
[1], [10]. Network-level Multicast is a natural choice to support
group communications for both saving network bandwidth and
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increasing application throughput. Although Multicast is not
widely deployed in the Internet due to management and pricing
issues, the controlled environment of data center provides a
good opportunity for its resurgence.

The technical trend for modern data center design is to use
a large number of low-end switches for server interconnection.
The space of the expensive and power-hungry fast memory in
this kind of switches, such as SRAM, is usually narrow to
control the economical cost, especially considering the link
speeds in data centers are increasing rapidly. Hence, a signifi-
cant challenge in the forwarding plane of data center switches
is how to maintain a potentially large number of forwarding
entries in the small memory space. Compared with Unicast, it
is especially difficult to aggregate Multicast forwarding entries
due to two reasons [18]. First, Multicast addresses are logical
identifiers without any topological information. Second, each
Multicast forwarding entry maintains an outgoing interface set
rather than a single outgoing interface, so it is less probable for
different forwarding entries holding common forwarding rules.
Previous investigation showed that typical access switches can
contain only 70∼1500 Multicast group states [11].

Bloom Filter is widely used to compress forwarding table
and help realize scalable forwarding in recent years, with
the cost of traffic leakage resulting from the false-positive
forwarding. For Multicast forwarding, we can let each switch
interface maintain a Bloom Filter, which encodes all the
Multicast groups on the interface. When the switch receives
a Multicast packet, all the Bloom Filters on its interfaces are
checked to determine whether to forward or not. In order to
design efficient Bloom Filters to control the traffic leakage, we
usually need to know the exact number of Multicast groups on
each switch interface. But this is quite difficult in data center
networks. First, Multicast tasks dynamically start and end, and
thus the number of Multicast tasks in data centers is not fixed.
Second, for a certain Multicast task, the group membership
distribution is even not determined, considering the flexibility
in virtual machine (VM) placement on physical servers as well
as VM migration during computation.

To solve the problem above, one possible choice is to dy-
namically update the Bloom Filter based Multicast forwarding
engine in the switch data plane to accommodate group join and
leave. But the overhead is quite high. Frequently updating the
forwarding engine at runtime may cause forwarding pauses



or even errors. We instead choose to optimize the Bloom
Filter setup for some steady-state Multicast communication
loads. We then run the forwarding engine for a relatively long
period of time, until when the Multicast communication load
changes significantly. It is feasible to infer some network-
wide conditions for such steady states, such as the number
of Multicast groups and the probability for each group to
join a switch interface. Hence, we can set the optimal Bloom
Filter parameters based on the probabilisticly expected number
of Multicast groups to join the interface. But the standard
Bloom Filter cannot well embrace this kind of membership
uncertainty in minimizing the traffic leakage.

We propose a novel multi-class Bloom Filter, or MBF,
to solve the element uncertainty problem. MBF extends the
standard Bloom Filter by choosing the number of hash func-
tions at a per-element level, based on the probability of each
element to be inserted into the Bloom Filter. Then we apply
MBF into the Bloom Filter forwarding engine on data center
switches to control the Multicast traffic leakage. Since in
practice the number of Multicast groups in the data center
can be very large, we develop a simple yet effective algorithm
to calculate the number of per-group hash functions. We
divide the Multicast groups into multiple slots and use a
low-complexity sorted enumeration method to get the optimal
number of hash functions for each slot.

Simulations in typical data center networks show that MBF
based Multicast forwarding can significantly reduce the traffic
leakage ratio compared with the standard Bloom Filter, espe-
cially when the group sizes are various, the Bloom Filter size
is narrow, or the network size is large. Even if we cannot
accurately estimate the number of Multicast groups in the
steady state, MBF still outperforms the stand Bloom Filter
when the estimation falls into a reasonable range.

We have prototyped a software based MBF forwarding
engine for data center Multicast on the Linux platform. Ex-
periments running on our testbed demonstrate that the MBF
forwarding engine brings neglectable CPU overhead even
when it forwards packets at full network speed. The packet
loss ratio is also comparable with that in traditional routing
entry based Multicast forwarding.

The rest of this paper is organized as follows. Section II
discusses the background and design challenges. Section III
presents the design of MBF and its application in scalable
data center Multicast. Section IV and Section V evaluate the
performance of the MBF based Multicast forwarding by sim-
ulations and experiments, respectively. Section VI introduces
the related work. Section VII concludes the paper.

II. BACKGROUND AND DESIGN CHALLENGES

In this section, we discuss the background of Bloom Filter
based Multicast forwarding as well as the design challenges.

A. Bloom Filter based Multicast Forwarding

Due to the growing forwarding entries on routers/switches
and the high cost of fast memory, recently Bloom Filter has

been adopted to achieve scalable Multicast forwarding, in both
the Internet [12], [13] and the data center networks [14], [15].

A standard Bloom Filter works as follows. Suppose we have
a Bloom Filter with the size of m bits and there are n elements
to insert. Initially, all bits in the Bloom Filter are set to 0. k
hash functions are used to hash each element to k bits in the
Bloom Filter, and the hashed bits are set as 1. After inserting
all the n elements, the probability that one bit in the Bloom
Filter is still 0 is (1− 1

m )
nk. The probability that one bit has

been set to 1 is hence 1−(1− 1
m )

nk. When checking whether
an arriving element is in the Bloom Filter or not, there can be
false positive since all the hashed bits can be set as 1 by other
elements. But there will be no false negative. The false positive
probability, fp, for an incorrectly matched element is fp =

[1− (1− 1
m )

nk
]
k
. To minimize the false positive probability,

we need to set k = ln 2 ∗ m
n , and the minimum value of the

false positive probability is ( 12 )
k.

There are two types of Bloom Filter based Multicast for-
warding schemes, namely, in-switch Bloom Filter and in-
packet Bloom Filter. For in-switch Bloom Filter based Mul-
ticast forwarding, each interface in the switch uses a Bloom
Filter to maintain the Multicast groups it joins. The traffic
overhead comes from the false positive forwarding in some
interfaces. Each interface can independently set the parameters
of its Bloom Filter to minimize the false positive probability
and thus control the traffic leakage.

In contrast, in-packet Bloom Filter encodes the Multicast
tree information into a Bloom Filter field carried in the packet
header, and eliminates the necessity of Multicast forwarding
entries in switches. However, the traffic overhead of in-packet
Bloom Filter based Multicast forwarding not only comes from
the false positive forwarding by switches, but also includes the
Bloom Filter field in the packet. Previous studies showed that
given the group size, there is an optimal Bloom Filter length
to minimize the bandwidth overhead [15]. For a certain group,
the Bloom Filter parameters for it should be set consistently
on the switches for forwarding correctness.

B. Design Challenges

Modern data center networks tend to use abundant low-
end switches to interconnect a massive number of servers for
a lower cost and higher network capacity. Since the space
of fast memory to maintain the forwarding entries in such
kind of low-end switches is quite limited, it is important to
design scalable Multicast forwarding scheme to embrace a
potentially large number of Multicast groups. We prefer in-
switch Bloom Filter rather than in-packet Bloom Filter for data
center Multicast forwarding for two reasons. First, in-switch
Bloom Filter requires updating the switches only, while in-
packet Bloom Filter needs to simultaneously update both the
switches and servers. The deployment is simpler if we make
fewer changes on the existing systems. Second, the bandwidth
overhead of in-switch Bloom Filter only comes from the false
positive forwarding, while that of in-packet Bloom Filter is
comprised of both the false positive forwarding and the in-



packet Bloom Filter field. Hence, we have more room to
optimize the traffic overhead using in-switch Bloom Filter.

However, there are also several challenges to design
bandwidth-efficient in-switch Bloom Filter for data center
Multicast. First, false positive forwarding by Bloom Filter
can cause loops. Second, Multicast groups and members
dynamically join and leave, but the standard Bloom Filter
does not support the deletion of an element. Third, when the
number of groups on a switch interface changes, we need to
recalculate the number of hash functions and reset the Bloom
Filter bits, so as to minimize the traffic leakage. But it requires
extra memory to maintain the exact group information on
the interface for rehashing. Besides, the cost of updating the
forwarding engine at runtime is very high, which can cause
forwarding pauses or even errors.

To address the first challenge, we can leverage the multi-
stage graph feature of recently proposed data center networks,
using the similar approach as in [15]. In multi-stage graphs,
there do not exist two neighboring nodes which have the
same distance to a third node. Therefore, we can let a switch
always forward packets to its neighboring nodes which are
more distant from the source server of the Multicast group.
Following this rule, the falsely forwarded packets will be
dropped within at most d hops, where d is the diameter of
the network. Hence no loop will be formed during the packet
forwarding.

For the second challenge, there are two candidate solutions.
The first approach is to employ the counting Bloom Filter [23]
other than the standard Bloom Filter in the fast memory.
The use of the counting Bloom Filter, however, will require
a larger memory space. The second approach is to adopt
counting Bloom Filter in the slow memory to maintain the
Multicast membership, while still using standard Bloom Filter
in the fast memory for fast-path forwarding. It follows the
idea in BUFFALO [16], which targets for Bloom Filter based
Unicast forwarding. Throughout this paper, we still make the
discussion based on the standard Bloom Filter, but it can be
easily extended to the counting Bloom Filter to support the
element deletion.

The primary goal of this paper is to tackle the third
challenge, i.e., setting optimal Bloom Filter parameters, in
particular the number of hash functions, to minimize the traffic
leakage. In the standard Bloom Filter, the optimal parameter
setting requires knowing the exact number of Multicast groups
on the interface. Since we do not want to frequently rehash
Multicast groups at runtime upon group membership change,
we choose to optimize the Bloom Filter setup for some steady
states. In these steady states, we can estimate the Multicast
communication load in the data center, i.e., the number of
Multicast groups as well as the group size distribution. We
run the forwarding engine designed for a steady state for
a relatively long period of time, until when the Multicast
communication load changes significantly. But even in the
steady states, the exact locations of the Multicast members are
not determined. Hence, we still cannot get the deterministic
group membership on a certain switch interface. To embrace

Fig. 1. Illustration of MBF. Different numbers of hash functions are
set for different elements.

the membership uncertainty on a switch interface, we propose
a novel multi-class Bloom Filter, or MBF, which will be
presented in the next section.

III. DESIGN

In this section we design multi-class Bloom Filter to realize
scalable data center Multicast.

A. Multi-class Bloom Filter

In the standard Bloom Filter, a set of deterministic elements
are inserted into the Bloom Filter, and a consistent number of
hash functions are used for mapping elements to the Bloom
Filter bits. But we consider a different scenario, i.e., when the
elements to join the Bloom Filter cannot be exactly determined
before designing the Bloom Filter. Specifically, suppose there
are totally N elements in the element space and the Bloom
Filter length is m. Each element i has a probability of pi to
be inserted into the Bloom Filter, and we call it the presence
probability of i. The expected number of elements in the
Bloom Filter is thus

∑N−1
i=0 pi.

Each element i has a probability of 1 − pi not to join
the Bloom Filter. For the element i which lies beyond the
Bloom Filter, it has a false probability, fi, to be false-positively
matched because its hashed bits are filled by other elements.
The expected number of falsely matched elements, E(fn),
should be E(fn) =

∑N−1
i=0 (1 − pi)fi. It suggests that when

the presence probability of an element is higher, the impact
of its false probability on the expected number of falsely
matched elements is lower. Intuitively, we can set different
number of hash functions for each element to minimize the
expected number of falsely matched elements. We call this
kind of Bloom Filter multi-class Bloom Filter (MBF).

In MBF, we independently choose a set of hash functions,
Hi, for element i (0 ≤ i < N ). Assume there is ∥Hi∥ = ki. If
we insert element i into the Bloom Filter, all the hash functions
from Hi are used to map to ki bits in the Bloom Filter. When
checking whether an element j is in the Bloom Filter, we also
take the hash functions from Hj . Fig. 1 shows an example
to differentiate the standard Bloom Filter and MBF. In the
standard Bloom Filter, all the three elements, a, b and c, use
the same three hash functions to map to the Bloom Filter bits.
But in MBF, element a has two hash functions, element b has



four hash functions, and element c has three hash functions
for mapping.

The false probability for the element i, fi, can thus be
expressed as

fi = [1− (1− 1

m
)

∑N−1

j=0
pj∗kj ]ki

B. Applying MBF into Data Center Multicast

As discussed in Section II, even when we design the optimal
Bloom Filter for a switch interface for the steady-state data
center Multicast communications, it is still challenging since
we have no knowledge of the exact number of Multicast
groups on the interface. But we can apply MBF to embrace
the membership uncertainty problem, given we can get the
total number of Multicast groups in the data center and their
presence probabilities to join the interface.

It is feasible to estimate the number of Multicast groups
within the data center in a certain steady state. A data center
usually runs typical group applications, such as file chunk
replication, Map-Reduce alike distributed computation, as well
as OS/application upgrading. The concurrent number of this
kind of applications in the steady state should be relatively
stable so as to guarantee the task finish time. Besides, we can
get the number from historical statistics. We will evaluate the
case when the estimation is inaccurate in Section IV.

As for estimating the presence probability of a group on
a certain switch interface, we can take both the group size
and the data center topology into consideration. For many
data center Multicast tasks, the group sizes can be roughly
pre-defined, e.g., the number of replicas for file chunk, or
the number of mappers and reducers for a Map-Reduce
computation tasks. Most data center networks have regular
topologies, which further help to estimate the probability of
a group joining an interface. We take the Fat-Tree network
composed of k-port switches as an example. The total number
of servers is Z = k3

4 . There is a group with r members. Now
we estimate the probability that this group joins a downside
interface of an edge-level switch. The presence probability
should be r

Z = 4r
k3 , if we assume the group members are

randomly distributed among all servers.
Therefore, we can use MBF for optimizing the Bloom Filter

forwarding engine on switch interfaces. Our goal is to limit
the traffic leakage. We consider a switch interface with n
groups joining it and their traffic volumes are t0, t1, ..., tn−1,
respectively. However, there are also q groups false-positively
matched on this interface by the Bloom Filter, and their traffic
volumes are v0, v1, ..., vq−1, respectively. Hence, we can
define the traffic leakage ratio on this interface, lr, as follows.

lr =

∑q−1
i=0 vi∑n−1
i=0 ti

.

In this paper, we set the traffic volumes equal for all the

Multicast groups 1. As a consequence, the traffic leakage ratio
can be simplified as

lr =
q

n
.

We estimate there are N Multicast groups in the data center
network in the steady state, and each group i (0 ≤ i < N )
has a probability of pi to join this interface. For a group
not joining the interface, it also has a probability of fi to be
false-positively matched by the Bloom Filter on the interface.
Hence, we can further express the traffic leakage ratio on the
interface as

lr =

∑N−1
i=0 (1− pi)fi∑N−1

i=0 pi
.

Note that here we make an assumption that the packets from
all the Multicast groups in the data center have chances to be
forwarded to the switch by upstream switches. In other words,
the traffic leakage ratio we define is the upper bound for the
switch interface. Though there is some gap here, we find that
this simple assumption works well in practice (please refer to
Section IV). If we use the MBF based Multicast forwarding
and set ki hash functions for the group i, the traffic leakage
ratio at this interface can be extended as Eq. 1.

lr =

∑N−1
i=0 (1− pi){[1− (1− 1

m )
∑N−1

i=0
pi∗ki ]ki}∑N−1

i=0 pi
. (1)

Given pi for each group, we can optimally select ki for
every group, so as to minimize the traffic leakage ratio. It is a
non-linear integer programming problem, and we will present
our approximate algorithm to solve it in the next subsection.

Here we give an example to demonstrate the advantage of
MBF over the standard Bloom Filter in the Multicast forward-
ing problem. Suppose that a switch interface has a Bloom
Filter with the size of 50 bits. 10 groups have a presence
probability of 0.2 on the interface, and 10 other groups have
a presence probability of 0.9. Hence, the expected number of
groups on the interface is E(n) = 10 ∗ 0.2+ 10 ∗ 0.9 = 11. If
the standard Bloom Filter is used, the optimal number of hash
functions for every group is k = ln 2m

n = 3.15. With k = 3,
the expected traffic leakage ratio is lr = 9.43%; while with
k = 4, the expected traffic leakage ratio is lr = 9.84%. How-
ever, by using different number of hash functions for different
groups and setting ki = 7(1 ≤ i ≤ 10), ki = 2(11 ≤ i ≤ 20),
we can get an expected traffic leakage ratio of 2.46%, which
is much lower than the minimum value under the standard
Bloom Filter. This simple example shows that MBF has a
great potential in limiting the traffic leakage in data center
Multicast forwarding.

1We leave as our future work to differentiate group traffic volumes. In
this paper, we are concerned with the situation where tens of thousands of
Multicast group communications are distributing files of similar size. This is
also a typical scenario, e.g., when GFS and Map-Reduce jobs distribute the
file chunks sized of 100MB.



C. Calculating the Number of Hash Functions

As shown in Eq. 1, in order to minimize the traffic leakage
ratio of the Bloom Filter forwarding engine on a switch
interface, we can optimally calculate ki for every group.
However, it is a non-linear integer programming problem.
When there are thousands of or even more Multicast groups in
the data center, it is difficult to solve the problem in reasonable
time.

We design a simple yet effective algorithm to address
this problem. We sort the Multicast groups based on their
probabilities to join the switch interface, and then divide the
whole set into S disjoint slots. Each slot has the same number
of groups. Groups within the same slot j share the same
number of hash functions, Kj . In this way, we largely reduce
the number of variables to solve. We can also vary the number
of S by considering the tradeoff between the resultant traffic
leakage ratio and the computation complexity.

We still assume there are in total N Multicast groups in
the data center in the steady state. Each of the S slots has G
groups. We define the presence probability of a slot j to join
a switch interface, Pj , as the average presence probability of
all groups within this slot to join this interface. It is set as
Pj = 1

G

∑G−1
i=0 pi, where pi is the presence probability of

group i on the interface.
By slotting, the traffic leakage ratio on this interface is

expressed as follows.

lr =

∑S−1
j=0 G ∗ (1− Pj){[1− (1− 1

m )

∑S−1

j=0
Pj∗Kj∗G]Kj}∑S−1

j=0 G ∗ Pj

=

∑S−1
j=0 (1− Pj){[1− (1− 1

m )

∑S−1

j=0
Pj∗Kj∗G]Kj}∑S−1

j=0 Pj

.

We can easily find out that if we use only one slot to put
the Multicast groups, MBF degrades to the standard Bloom
Filter, which sets the same number of hash functions for all
the elements inside. In most cases, it works well enough to
set S as a small number. As a result, we can use the simple
enumeration method to select the optimal Kj , by limiting Kj

as a positive integer less than a relatively small number.
However, if we use the naive enumerating algorithm, the

computation complexity is XS , where S is the number of
group slots, and X is the maximum number to enumerate. The
exponential computation complexity is usually unacceptable,
even for small X and S. Fortunately, we can greatly reduce
the computation complexity of the enumeration method based
on Theorem 1.

Theorem 1: For two slots i and j, if the presence possibility
of slot i is less than that of slot j, i.e., Pi < Pj , the optimal
number of hash functions of slot i should be greater than or
equal to that of slot j, i.e., Ki ≥ Kj , so as to reduce the traffic
leakage ratio of the MBF forwarding engine.

Proof: Please refer to Appendix A.
Based on Theorem 1, if we sort all the slots based on their

presence probabilities and get P0 ≥ P1 ≥ ... ≥ PS−1, the

number of hash functions we enumerate for these slots should
satisfy K0 ≤ K1 ≤ ... ≤ KS−1. We call this enumeration
algorithm sorted enumeration.

Theorem 2: The computation complexity of the sorted enu-
meration is

(
X+S−1

X

)
, where S is the number of groups

slots and X is the maximum number of hash functions we
enumerate for each group.

Proof: In sorted enumeration, there is always K0 ≤ K1 ≤
... ≤ KS−1, 1 ≤ Ki ≤ X . We build a mapping from Ki to
Oi, where Oi = Ki+ i. Then we get O0 < O1 < ... < OS−1,
1 ≤ Oi ≤ (X + S − 1). Enumerating Ki (0 ≤ i < S) from
[1,X] is equivalent to enumerating Oi (0 ≤ i < S) from
[1,X + S − 1]. Obviously, the computation complexity of the
latter is

(
X+S−1

X

)
. Therefore, the computation complexity of

the sorted enumeration is also
(
X+S−1

X

)
.

Hence, by sorted enumeration, we reduce the computation
complexity of the enumeration algorithm from exponential to
polynomial.

Theorem 3: For the MBF Multicast forwarding engine on
a certain switch interface, if we solve the optimal Ki for each
slot i (0 ≤ i < S) by enumerating Ki from 1 to X , the traffic
leakage ratio on this interface satisfies

lr ≤ max{lropt1,
N − n

n
∗ (1

2
)
X

}.

Here lropt1 indicates the minimum traffic leakage ratio of
the standard Bloom Filter (or 1-slot MBF), N denotes the total
number of Multicast groups in the network, and n denotes the
expected number of groups on the switch interface.

Proof: Please refer to Appendix B.
Mapping Group Addresses to the Group Sizes: We set

different number of hash functions for the Multicast groups in
the steady state based on their presence probabilities. When
a switch forwards a Multicast packet, it needs to decide how
many hash functions to use for Bloom Filter checking. Note
that we use group size to determine the presence probability.
Hence, we divide the Multicast address space into many slots,
and intentionally map the Multicast group addresses to group
sizes when assigning the group addresses. For example, we
set 5 hash functions for a group size of 5000 in the steady
state, and map the Multicast address 225.1.1.1 to the group
size of 5000. Then, a switch can decide the number of hash
functions to use based solely on the Multicast address. It is
feasible in the data center Multicast since it is a managed
environment. We can depend on a controller for the Multicast
address assignment.

IV. SIMULATION

We conduct simulations to evaluate the MBF based Mul-
ticast forwarding scheme in typical data center networks.
We compare MBF with the standard Bloom Filter, study its
performance when we cannot accurately estimate the number
of Multicast groups in the data center, and measure the
computation complexity of our enumerating algorithm when
solving the optimal number of hash functions.



Fig. 2. A Fat-Tree architecture with 16 servers. It has three levels
of 4-port switches.

A. Simulation Setup

We use Fat-Tree as the data center topology to run sim-
ulations. Fat-Tree [4] is a recently proposed data center
network architecture to replace the traditional tree architecture.
As shown in Fig. 2, the Fat-Tree network has three levels
of switches, namely, edge-level, aggregation-level and core-
level. The links between any two adjacent levels have the
same network capacity, hence Fat-Tree network can offer 1:1
oversubscription ratio.

We generate Multicast groups of different sizes according
to the simulation requirements. For each group, we select the
source node and receiver set randomly from all the data center
servers. We run every simulation for 10 times to mitigate the
impact of randomness. The presence probability of a group on
a certain switch interface can easily be inferred by the group
size.

The edge-level switches in the Fat-Tree network are the
bottleneck switches to hold the Multicast forwarding entries
because they are the dominate parts in the Multicast trees.
Hence, we only evaluate the traffic leakage ratio on the edge-
level switches. In all our simulations, we assume there are in
total 10,000 Multicast groups in the steady state.

B. The Number of Group Slots

We measure the traffic leakage ratio on the edge-level
switches by varying the number of group slots we divide from
1 to 15. Note that MBF degrades to the standard Bloom Filter
when we use only 1 slot. We also evaluate the impacts of
other conditions, namely, the group size distribution pattern,
the Bloom Filter size, as well as the network size.

Group Size Distribution: We run the simulation in a Fat-
Tree network built by 48-port switches. The total number of
servers is 27648. Assume the switch has a memory space of
100KB for fast-path forwarding, half of which is used for
Multicast forwarding (the other half for Unicast). Hence, the
Bloom Filter size for Multicast forwarding on each interface
is about 50K ∗ 8/48 ≈ 8000 bits. Note that in data centers,
small-sized groups, such as file-chunk replication, should be
much more than large-sized groups, such as Map-Reduce
binary distribution [15]. Hence, we assume the group size
follows a power-law distribution pattern. More formally, there
is y = a ∗ xα, where x is the group size between [3,27648]
and y is the number of groups. We consider three cases, i.e.,
α = −1.05, α = −1 and α = −0.95.
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Fig. 3. Traffic leakage ratio against different numbers of slots and
group size distributions.
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Fig. 4. Traffic leakage ratio against different numbers of slots and
Bloom Filter sizes.

Fig. 3 shows the simulation results. We find that for all the
distribution patterns, the traffic leakage ratio generally decreas-
es with more group slots. But there is no obvious improvement
when the number of group slots becomes larger than 10. There
are cases that the traffic leakage ratio slightly increases when
there are more group slots, because the different combinations
of groups in each slot also affect the result. But it rarely occurs.
It is noticeable that when the power-law distribution is less
skewed, the benefit of MBF is more obvious. For instance,
when α = −0.95, MBF can reduce the traffic leakage ratio
by more than 60% compared with the standard Bloom Filter,
i.e., when using only 1 slot.

Bloom Filter Size: We study the impact of Bloom Filter
size by choosing the Fat-Tree network with 48-port switches,
and assuming the group size follows a power-law distribution
pattern with α = −1 between [3,27648]. We vary the Bloom
Filter size on the edge-level switch interface as 6000, 8000,
10000 and 12000 bits. In practice it corresponds to switches
with different fast memory spaces for the Multicast forwarding
entry maintenance.

The simulation results are shown in Fig. 4. As expected,
a longer Bloom Filter results in lower traffic leakage ratio
because of the less false-positive matching. But we also find
that when the Bloom Filter size is smaller, the traffic leakage
reduction by MBF is more obvious. For example, when the
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Fig. 5. Traffic leakage ratio against different numbers of slots and
network sizes.

Bloom Filter size is 6000 bits, the traffic leakage ratio in the
standard Bloom Filter is above 20%, while that in MBF is as
low as about 8%. It suggests that MBF is especially helpful
when the fast memory space on switches is very limited.

Network Size: To evaluate the impact of network size, we
choose Fat-Tree network composed of 16-port switches, 32-
port switches, and 48-port switches, respectively. The Bloom
Filter size on the edge-level interface is fixed as 8000 bits,
and the group sizes also follow the power-law distribution with
α = −1 between [3,Z], where Z is the total number of servers
in the Fat-Tree network.

Fig. 5 demonstrates the results. From the figure, the larger
networks tend to have higher traffic leakage ratios. This is
because when a switch has more links, there is more chance
that a packet is false-positively forwarded to other interfaces.
On the other hand, larger networks also benefit more from
MBF based forwarding.

C. Inaccurate Estimation on the Number of Groups

We configure the MBF based Multicast forwarding engine
on data center switches for steady states, and do not frequently
update the forwarding engine. But there is high probability
that the number of groups we estimate for some steady state
is inaccurate. If this is the case, the number of hash functions
we set for each group may not be optimal to control the traffic
leakage ratio.

In this simulation, we evaluate the impact of inaccurate
estimation on the traffic leakage ratio. The network we use is
a Fat-Tree network composed of 48-port switches. The Bloom
Filter size is 8000 bits. The actual number of Multicast groups
is still 10000, but we vary the estimated number from 2500 to
17500. The group sizes follow the power-law distribution with
α = −1.0 between [3,27648]. We test the cases of dividing
the group set into different number of group slots, i.e., S = 1,
S = 2, S = 5 and S = 10. S = 1 also serves as the baseline
of the standard Bloom Filter.

Fig. 6 shows the simulation results. We observe that gener-
ally, the more group slots we divide, the lower traffic leakage
ratio we get. It is consistent with the previous simulations,
but we validate that it also holds even when the estimation
is inaccurate. For the same number of group slots, the traffic

0 0.5 1 1.5 2

x 10
4

2

4

6

8

10

12

14

16

18

Estimated number of groups

T
ra

ff
ic

 l
e
a
k
a
g
e
 r

a
ti
o
 (

%
)

 

 

S = 1

S = 2

S = 5

S = 10

Fig. 6. Traffic leakage ratio under inaccurate estimation of the number
of steady-state groups.

leakage ratio first decreases, then reaches the minimum point,
and then gradually increases with the even larger estimated
number. But it is interesting to find that the minimum traffic
leakage ratio is not obtained when the estimated number of
groups is exactly equal to the actual number. Instead, the
estimated number at the magic point is a little less than the
actual number. It is because when we design MBF, we assume
that all the N Multicast groups in the data center have chances
to be forwarded to the edge-level switch where this interface
lies. However, in practice the number should be smaller than
N . The traffic leakage ratio is minimized when the estimated
number is equal to the number of groups forwarded to the
switch.

Moreover, we observe that even when the estimation is in-
accurate, the traffic leakage ratio using MBF still outperforms
the optimal value of the standard Bloom Filter if the estimation
falls into a reasonable range. In our simulation, when the
estimated number of groups is between [5000,15000], the
traffic leakage ratios in S = 5 and S = 10 curves are less than
the minimum value with the standard Bloom Filter, which is
shown by the dashed line in the figure. This property of MBF
indicates that we can relax the precision requirement on the
estimated number of steady-state groups. Rough estimation
usually works well enough in practice.

V. IMPLEMENTATION AND EXPERIMENT

In this section, we present the implementation of the
prototyped MBF based Multicast forwarding engine and the
experiments atop.

A. Implementation

MBF based Multicast forwarding engine requires modifying
the data plane of switches. It has been shown that, if employing
OpenFlow [17] framework which has already been ported to
run on a variety of hardware platforms, such as switches from
Cisco, Hewlett Packard, and NEC, only minor modifications
(several lines of codes) on the data path of switches are
required to encompass Bloom Filter based forwarding [14].
This supports our belief that the MBF forwarding scheme can
be well incorporated into existing commodity switches.



Fig. 7. The flowchart on the MBF forwarding engine.
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Fig. 8. Packet loss ratio under the MBF based Multicast forwarding
and the routing entry based Multicast forwarding.

At current stage, we have implemented a software based
MBF forwarding engine on Linux platform leveraging the
NetFilter module. Fig. 7 shows the flowchart for the forward-
ing engine. When a Multicast arrives, the forwarding engine
checks the Multicast group address, and then determines the
set of hash functions to use for this group. Note that we make
the mapping from group address to group size, and further
to the set of hash functions, as discussed in Section III. The
Bloom Filter on each interface will be checked based on the
hashed bits to decide whether to forward the Multicast packet
to that interface.

B. Experiments

We conduct experiments to study the system overhead
brought by MBF based forwarding engine. We use a small
test bed composed of 5 hosts: 1 Multicast sender, 3 Multicast
receivers and 1 forwarder. The forwarder has one 2.8G In-
tel(R) Core(TM)2 Duo CPU, 2GB DRAM, and four Realtek
RTL8111/8168B PCI Express Gigabit Ethernet NICs, each
connecting one of the other four hosts. The forwarder is
installed with Ubuntu Linux 9.10 (karmic) with kernel 2.6.31-
14-generic. The sender sends out UDP Multicast packets for a
group at different speeds (from 200Mbps to 1000Mbps), and
the 3 receivers join the group to receive the packets.

We first measure the CPU overhead of the MBF forwarding
engine. At all network speeds we test (from 200Mbps to 1Gbp-

s), we do not find obvious rise on the CPU utilization. Then we
compare the packet loss ratio between MBF forwarding engine
and the traditional routing entry based Multicast forwarding
engine. Fig. 8 shows the results. It suggests that at all packet
speeds, the packet loss ratios under the two forwarding engines
are similar. Even when we send the Multicast packet at the
full network speed of 1Gbps, the packet loss ratio is only
0.2%. Overall, the MBF based Multicast forwarding brings
little system overhead.

VI. RELATED WORK

In this section we discuss the related work in scalable Mul-
ticast forwarding as well as the Bloom Filter improvements.

A. Scalable Multicast Forwarding

As one of the deploying obstacles of Multicast in the
Internet, scalable Multicast forwarding has attracted much
attention in the research community. For data center networks
where low-end switches with limited forwarding table memory
space are used, the problem is even more challenging. One
possible solution is to aggregate multiple Multicast forwarding
entries into a single one, as used in Unicast. However, it is
difficult for Multicast aggregation because Multicast group
address is logical without any topological information [18].

Bloom Filter can be used to compress in-switch Multicast
forwarding entries. In FRM [12], Bloom Filter based group
information is maintained at border routers to help determine
inter-domain Multicast packet forwarding. A similar idea is
adopted in BUFFALO [16], though it is primarily designed
for the scalable Unicast forwarding. They both use standard
Bloom Filter, which requires the exact membership informa-
tion.

Another solution is to encode the tree information into
in-packet Bloom Filter, and thus there is no need to instal-
l any Multicast forwarding entries in network equipments.
For instance, LIPSIN [13] adopts this scheme. However, the
bandwidth overhead of this solution comes not only from the
false-positive forwarding of Bloom Filters, but also from the
in-packet Bloom Filter field. Besides, in-packet Bloom Filter
based Multicast forwarding also relies on the actual Multicast
tree information.

In the recent work of MCMD [19], scalable data center
Multicast is realized in the way that only partial groups are
supported by Multicast according to the hardware capacity, and
the other groups are translated into Unicast communications.
Though this approach solves the scalability problem of data
center Multicast, it cannot fully utilize the advantage of
Multicast in bandwidth saving.

B. Bloom Filter Improvements

To accommodate different application scenarios, there are
many improvements on the standard Bloom Filter.

Efforts have been made on efficiently allocating the memory
for a dynamic Bloom Filter, the size of which can vary.
In the case of standard Bloom Filter, the memory space
required for a Bloom Filter should increase linearly with the



maximum possible number of elements in the set to control
the maximum false positive rate, and thus much memory is
wasted. Dynamic Bloom Filter [20], or DBF, uses a variable
number of standard Bloom Filters to represent a Bloom Filter
set. i-DBF [21] improves DBF in the addition operation with
a new algorithm. Incremental Bloom Filter [22] considers the
problem of minimizing the memory requirement in case where
the number of elements in the set is unknown in advance but
the distribution of the number of elements is known.

Counting Bloom Filter [23], or CBF, uses a counter instead
of a single bit in each Bloom Filter cell in order to allow
element deletion operation. When inserting an element into the
Bloom Filter, we increment the hashed counters by 1; while
deleting an element from the Bloom Filter, we decrement
the hashed counters by 1. There are also some enhancements
based on the basic idea of CBF. Spectral Bloom Filter [24]
makes the length of the counter of each cell different in
order to optimize the counter space allocation. Dynamic Count
Filters [25], or DCF, makes further improvements by using
two vectors, namely, a CBF vector and an OPV vector, to
represent a Bloom Filter set. dlCBF [26] provides a simple
hashing-based alternative based on d-left hashing, which offers
the same functionality as a CBF, but uses much less space.

Compressed Bloom Filter [27] targets to compress the
Bloom Filter bits to save memory space. Instead of optimiz-
ing the number of hash functions for a given Bloom Filter
size, compressed Bloom Filter optimizes the number of hash
functions for the compressed size of the Bloom Filter. The
cost is the processing time for compression and decompres-
sion, which can use simple arithmetic coding. Multi-Layer
compressed CBF was also proposed to reduce the memory
requirements and the lookup complexity of CBF [28].

Space-code Bloom Filter [29] is an approximate repre-
sentation of a multiset Bloom Filter, which allows for the
query ”How many occurrences of an element are there in a
set”. Distance-Sensitive Bloom Filters [30] generalizes Bloom
Filters to answer queries of the form, ”Is x close to an element
of S?”, where closeness is measured under a suitable metric.
Such a data structure would have several natural applications
in networking and database applications.

VII. CONCLUSION

In this paper, we designed MBF, which extends the standard
Bloom Filter by embracing element uncertainty. MBF sets the
number of hash functions in a per-element level to minimize
the expected false positive of the Bloom Filter. We applied
MBF into the Multicast forwarding engine on switches to
achieve scalable Multicast, and developed a low-complexity
algorithm to calculate the optimal number of hash functions
for each Multicast group. Simulation results showed that MBF
can significantly reduce the traffic leakage ratio compared with
the standard Bloom Filter, especially when the group sizes are
various, the Bloom Filter size is narrow, and the network size
is large. We prototyped a software based MBF forwarding
engine on the Linux platform. The experiments on the testbed
demonstrated that MBF brings little system overhead.
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APPENDIX

A. Proof of Theorem 1.
Without loss of generality, we assume that i = 0 and j = 1.

The number of Multicast groups within each slot is G. We
assume that the traffic leakage ratio of the MBF forwarding
engine, lr, gets the minimum value when the number of hash
functions for slot j, Kj , is set as the optimal value of K ′

j . We
further assume K ′

0 = Ka and K ′
1 = Kb.

Then we use a contradictory condition to prove Theorem 1.
When there is P0 < P1 and Ka < Kb, we can get a smaller
traffic leakage ratio by swapping Ka and Kb.

We use f(K0, ...,KS−1) to stand for the probability that a
certain bit in the Bloom Filter is set by 1, when the number
of hash functions for slot i is Ki. There should be

f(K0, ...,KS−1) = 1− (1− 1

m
)
G∗

∑S−1

i=0
Pi∗Ki

.

Let lx,y denote the leaked traffic of the MBF forwarding
engine when slot 0 uses x hash functions and slot 1 uses y
hash functions, under the condition that all other slots use the
optimal number of hash functions. Then we compare lKa,Kb

and lKb,Ka when there is P0 < P1.
We further denote fKa,Kb

= f(Ka,Kb,K
′
2, ...,K

′
S−1) and

fKb,Ka = f(Kb,Ka,K
′
2, ...,K

′
S−1). Since P0 < P1 and

Ka < Kb, we have P0 ∗Ka + P1 ∗Kb > P0 ∗Kb + P1 ∗Ka.
So there is fKa,Kb

> fKb,Ka .
According to the properties of the MBF, we have

lKa,Kb
= G ∗ [

S−1∑
i=2

(1− Pi) ∗ fKa,Kb

K′
i

+(1− P0) ∗ fKa,Kb

Ka + (1− P1) ∗ fKa,Kb

Kb ]

> G ∗ [
S−1∑
i=2

(1− Pi) ∗ fKb,Ka

K′
i

+(1− P0) ∗ fKb,Ka

Ka + (1− P1) ∗ fKb,Ka

Kb ]

> G ∗ [
S−1∑
i=2

(1− Pi) ∗ fKb,Ka

K′
i

+(1− P0) ∗ fKb,Ka

Kb + (1− P1) ∗ fKb,Ka

Ka ]

= lKb,Ka .

Therefore, when there is P0 < P1 and Ka < Kb, we can
get smaller leaked traffic by swapping Ka and Kb, which also
results in a smaller traffic leakage ratio. This is a contradict.

In summary, when there is Pi < Pj , we should set K ′
i ≥ K ′

j

to minimize the traffic leakage ratio.

B. Proof of Theorem 3.
We use lr(K0,K1, ...,KS−1) to denote the traffic leakage

ratio when slot 0 uses K0 hash functions, slot 1 uses K1

hash functions, ..., and slot S − 1 uses KS−1 hash functions.
Assume in the standard Bloom Filter, K is the number of hash
functions assigned to each group, and we get the minimum

traffic leakage ratio, lropt1, when there is K = Kopt1. Hence
we also have lropt1 = lr(Kopt1,Kopt1, ...,Kopt1) for any
number of S.

There are two cases when we use enumeration to solve the
optimal Ki for each slot i.

Case 1: Kopt1 ≤ X .
Since we have enumerated each Ki from 1 to X , so there

is

lr ≤ lr(K0,K1, ...,KS−1), 1 ≤ Ki ≤ X.

We assume Kopt1 ≤ X , so we have

lr ≤ lr(Kopt1,Kopt1, ...,Kopt1) = lropt1.

Case 2: Kopt1 > X .
Let Pi be the presence probability of slot i, and m be the

Bloom Filter size. There is

lr ≤ lr(X,X, ...,X)

=

∑S−1
i=0 (1− Pi) ∗ [1− (1− 1

m )
G∗

∑S−1

i=0
Pi∗X ]X∑S−1

i=0 Pi

≤
∑S−1

i=0 (1− Pi) ∗ [1− (1− 1
m )

G∗
∑S−1

i=0
Pi∗Kopt1 ]X∑S−1

i=0 Pi

.

Note that in the standard Bloom Filter, there is Kopt1 =

ln 2 ∗ m
n . Here n = G ∗

∑S−1
i=0 Pi.

So we have

lr ≤
∑S−1

i=0 (1− Pi) ∗ [1− (1− 1
m )

∑S−1

i=0
G∗Pi∗ln 2∗m

n ]X∑S−1
i=0 Pi

=

∑S−1
i=0 (1− Pi) ∗ [1− (1− 1

m )
m∗ln 2

]X∑S−1
i=0 Pi

≈
∑S−1

i=0 (1− Pi) ∗ [1− (1− e
−m ln 2

m )]X∑S−1
i=0 Pi

=

∑S−1
i=0 (1− Pi) ∗ [1− (1− 1

2 )]
X∑S−1

i=0 Pi

=

∑S−1
i=0 G ∗ (1− Pi)∑S−1

i=0 G ∗ Pi

∗ 1

2

X

=
N − n

n
∗ (1

2
)
X

.

In summary, we get

lr ≤ max{lropt1,
N − n

n
∗ (1

2
)
X

}.


