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Abstract— As more and more wireless subscribers access
the Internet through cellular networks, Internet data
traffic, which is known to be long range dependent (LRD),
will soon dominate the conventional voice traffic. In this
paper, we study the impact of such LRD data traffic on
the statistical characteristics of Multi-Access Interference
(MAI) and Signal to Interference-plus-Noise Ratio (SINR)
in a Code Division Multiple Access (CDMA) network.
Through analysis and simulation, we show that the time-
scaled MAI and SINR have slow decaying tail distributions
due to the LRD data traffic. As a result, the outage
probability is larger for data users than that for voice
users.

To improve the performance of the CDMA network in
the presence of LRD data traffic, we propose a variable
period prediction scheme to predict MAI or the equivalent
number of active users. We show that the proposed
variable period prediction is not only more accurate for
data users but also less memory-consuming than existing
fixed period prediction. In addition, rate control and call
admission control based on variable period prediction can
achieve lower outage probability and higher throughput
for data users than that based on fixed period prediction.

I. INTRODUCTION

The first generation and most of the second generation
cellular systems are developed mainly for voice services
as most of the subscribers are voice users. However,
in the coming third generation mobile systems, most
subscribers will access the Internet through the wireless
cellular networks for email, file transfer, web browsing,
multimedia and other Internet applications. As new Inter-
net based services and applications continue to emerge, it
is expected that the traffic of the next generation mobile
cellular networks will be dominated by the Internet data.

Understanding the nature of the traffic in the next
generation mobile networks is critical for efficient net-
work protocol and system design. Since Code Division
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Multiple Access (CDMA) [1] is currently the dominant
technology for wireless cellular networks in North Amer-
ica, and expected to continue to play an important role in
the next generation cellular networks, we are particularly
interested in the performance impact of Internet data
traffic on a CDMA network.

In a CDMA network, traffic transmissions by all
other active users contribute to Multi-Access Interference
(MAI) of an individual user. Therefore, the character-
istics of the aggregated traffic transmitted by all other
users affect the characteristics of MAI, and in turn Signal
to Interference Noise Ratio (or SINR) which indicates
the quality of the received signal of the individual
user. While the conventional voice traffic in a CDMA
network is usually modeled as Poisson process with
an exponential interarrival time of packets or bursts,
with the introduction of Internet applications mentioned
above, Poisson processes can no longer characterize
the aggregated data traffic transmitted over a CDMA
network. More specifically, it has been shown in [2] that
the Internet traffic is much more bursty over larger time
scales than voice traffic, and is usually characterized as
a self-similar or Long Range Dependent (LRD) process.
In this paper, we use the Weibull Bounded Burstiness
(WBB) process in [3] to characterize the LRD charac-
teristics in a CDMA network and study the impact of
long range dependency on MAI as well as SINR in a
CDMA network with many data users.

Most of traditional performance studies in CDMA
networks have been focused on the (long term) average
MAI and SINR. The admission control mechanisms and
most of the other related techniques developed in CDMA
networks are based on these average performance mea-
sures of the system, which works well when voice traffic
dominates. However, with data traffic which is more
bursty and exhibits long range dependency, one needs
to look beyond the average performance measures and
instead, focuses more closely on the correlated behavior.

The need for looking beyond the average behavior is



2

that a system with many data users may experience, for
example, a longer period of having a large number of
active users followed by a longer period of having a
small number of users than a system with voice users,
even though the two systems may have the same average
number of users. In other words, in the system with
data users, the distribution and autocorrelation of both
the MAI and SINR will be different from those in a
system with only voice users. Such differences will lead
to different outage probabilities and throughputs, and
also affect other mechanisms including rate control and
Call Admission Control (CAC) in the two systems.

So far, there have been only limited studies on the
distribution and autocorrelation of the MAI and SINR
in a CDMA system with data users. For example, it
has been first proved in [4], [5] that LRD Internet
traffic transmitted by a large number of data users in
a CDMA system results in LRD MAI. However, [4], [5]
only studied MAI’s self-similarity, without giving any
analytical distribution of MAI and other performance
measures including SINR and outage probability.

In this paper, starting from the impact of LRD data
traffic on MAI, the statistical characteristics and the tail
distribution of MAI (or equivalently the number of active
users) and SINR in the presence of many data users are
analyzed. One of our major contributions is the devel-
opment of statistical formulas for both MAI and SINR
distribution and tail probability in different time scales.
It is found through both analysis and simulation that
both MAI and SINR have slow decaying tails in large
time scales, and in addition, the corresponding outage
probability is also higher due to the presence of LRD
data traffic. Another major contribution of this paper is
that a Variable Period (VP) prediction scheme taking into
consideration such impact is proposed and demonstrated
to outperform Fixed Period (FP) prediction proposed in
[4], [5]. We show that the proposed VP prediction is not
only more accurate for data users but also less memory-
consuming than FP prediction. The VP prediction is
applied to rate control and CAC, and our simulation
results show that both rate control and CAC based on VP
prediction achieve higher throughput and lower outage
probability than those based on FP prediction or those
without prediction at all. Our studies further verify the
usefulness of the proposed VP prediction in supporting
data users in future CDMA networks.

The rest of this paper is organized as follows. Sec-
tion II introduces the basic concept related to LRD
processes. Section III studies the impact of long range
dependency on MAI, SINR and outage probability in
CDMA networks, via both analysis and simulation.
To enhance the network performance for data users, a

Variable Period (VP) prediction scheme is proposed in
Section IV to predict MAI and the number of active
users in the CDMA system. Its performance is compared
with that of Fixed Period (FP) prediction in terms of
prediction accuracy. In Sections V and VI, VP prediction
is applied to rate control and Call Admission Control
(CAC), which achieve higher throughput and lower out-
age probability in the CDMA network for data users
than the existing rate control and CAC based on FP
prediction or those without prediction. Finally, Section
VII concludes this paper.

II. LONG RANGE DEPENDENT PROCESS

In this section, we introduce the concept of long
range dependent (LRD) processes, which is useful in
understanding the discussion and especially the formulas
in the subsequent sections.

A LRD process is often characterized by heavy traffic
bursts that extend over a wide range of time scales [2],
[6]. Suppose A is a discrete LRD process, and A(u)
denotes the u-th sampling of A. Define AT to be the
average of A aggregated in a time interval T . The v-th
sampling of AT is expressed as

AT (v) =
1

ST

vST∑
u=(v−1)ST +1

A(u), (1)

where ST is the total number of samplings contained
in T . We call A as the instantaneous process, and
accordingly AT is called the time-scaled process of A.

Denote the autocorrelation of A by rA(m) (which is
defined to be E[A(u)A(u+m)]), and the autocorrelation
of AT by rT

A(m). A Short Range Dependent (SRD)
process has rT

A(m) < rA(m) and rT
A(m) decreases with

T . However, for an LRD process, rT
A(m) = rA(m) for

any m with T → ∞, or in other words, the autocor-
relation of time-scaled process is similar to that of the
instantaneous process [7]. The variance of time-scaled
process also exhibits similar trend, i.e., it decreases much
faster with T for an SRD process than that for an LRD
process [8].

A time-scaled LRD process AT often possesses a
tail distribution that decays slower than that of time-
scaled SRD process. It has been shown that the tail
distribution of AT has a Weibull bound, which is gen-
erally larger than the exponential bound associated with
an SRD process. Accordingly, A can be modelled as
a discrete Weibull Bounded Burstiness (WBB) process
[3] as WBB(C, µ, ν) with parameters C > 0 (which
denotes the asymptotic constant), µ > 0 (which denotes
the decay rate), and 0 < ν = 2−2H ≤ 1 (which denotes
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the index parameter)1, and the tail distribution of AT

satisfies a Weibull bound as follows:

Pr{AT (v) > E[A] + x} ∼ Ce−µ(xST )ν

(2)

for all x ≥ 0, all T > 0 and all v ≥ 0, where E[A] is
the long term average value of A and x is defined as the
tail of AT (v).

III. IMPACT OF LRD ON A CDMA SYSTEM

In this section, we study the impact of LRD data
traffic on a CDMA network. In particular, we consider
the impact of LRD data traffic on uplink performance of
a CDMA system, and show through analysis and simu-
lation that both MAI and SINR have slow decaying tails
in large time scales, and in addition, the corresponding
outage probability is also higher due to the presence of
LRD data traffic.

Suppose there are N users in the CDMA network and
let Xi(u) be the activity indicator of user i at the u-
th sampling time. Xi(u) is an ON/OFF process. During
the ON period, Xi(u) = 1 and the user transmits at a
constant rate Ri with a transmission power Pi (per time
unit), while during the OFF period, Xi(u) = 0 and the
user does not transmit, i.e.,

Xi(u) = { 1, if user i is ON
0, if user i is OFF

Note that RiXi is the traffic arrival process of user i.
Since the inter-arrival time of data bursts for Internet data
users could be either lognormal or Pareto distributed [2],
it indicates that the distribution of OFF period duration
Toff is usually heavy tailed as:

P{Toff > x} ∼ x−α (3)

for any given x > 0. Here α = 3 − 2H and 1 <
α ≤ 2. Such an ON/OFF process is also called a heavy
tailed ON/OFF process. It has been demonstrated that
the aggregation of multiple such heavy tailed ON/OFF
processes, i.e., ΣN

j=1Xj(u), is an LRD process [7], [9],
[10].

A. LRD Impact on MAI

In this subsection, we first develop formulas to show
that a time-scaled MAI has a slow decaying tail dis-
tribution and then verify this claim through simulation
results.

1Here 0.5 ≤ H < 1 is the Hurst parameter indicating the degree
of LRD, and a larger H is usually associated with a heavier LRD
process. In particular, an SRD flow is always associated with H = 0.5
or ν = 1

We assume that the CDMA system implements power
control [11], [12] to achieve the same Signal to Inter-
ference Ratio (SIR) at the base station for every user so
that no user gains better performance with a transmission
power higher than necessary. Suppose Pj is the receiving
power per time unit detected at the base station for user
j who is currently transmitting. With power control, the
receiving power per bit Pj/Rj from any user j is the
same, which equals to a constant power P (per data bit),
i.e., Pj/Rj = P .

The MAI detected by an individual user i at the u-th
sampling time is calculated as the sum of the receiving
power Pj of all the other existing users in the system
except for user i itself, i.e., the u-th sampling of MAI is
expressed as

Ii(u) = ΣN
j=1,j �=iPjXj(u) (4)

With power control, Pi/Ri = Pj/Rj , and Eq. (4) is
rewritten as

Ii(u) = PiΣN
j=1,j �=iXj(u)

Rj

Ri
= PiKi(u), (5)

where Ki(u) =
∑N

j=1,j �=i Xj(u)Rj

Ri
is the equivalent

number of active users (seen by user i) who transmit
with the same data rate Ri as user i. In particular, when
all users transmit at the same data rate, i.e., Ri = Rj ,
then Ki(u) is the actual number of active users in the
system. For brevity, we call Ki simply “the number of
active users” (i.e., we will not use the word “equivalent”).

Since Xj(u) is a heavy tailed ON/OFF process,
Xj(u)Rj

Ri
is still a heavy tailed ON/OFF process. There-

fore, the aggregated process K(u) of such multiple
heavy tailed ON/OFF processes is an LRD process. Ac-
cordingly, the autocorrelation of K and KT are identical,
i.e., rT

K(m) = rK(m). Since MAI Ii(u) = PiK(u),
where Pi is a constant, Ii(u) is also an LRD process.
A similar proof that shows MAI is LRD can be found
in [4], [5]. In this paper, we model MAI with a discrete
WBB process, and the time-scaled MAI IT

i has a Weibull
bound on its tail distribution according to Eq. (2):

Pr{IT
i (v) > E[Ii] + x} ∼ Ce−µ(xST )ν

(6)

for any v > 0. Here E[Ii] is the long term average MAI
and x is the tail of the IT

i . From Eq. (6) we can see
that increasing time scale T (or ST ) decreases the tail
probability. In particular, since data users are associated
with ν < 1 while voice users are associated with ν = 1,
the tail probability for voice users decreases with T faster
than that for data users.

The Weibull bound only characterizes the tail distri-
bution of time-scaled MAI, which is not sufficient to
characterize the general distribution of IT

i . Since the user
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behavior is independent of each other, the instantaneous
MAI Ii is the sum of PjXj , which follows a Gaussian
distribution according to the central limit theorem. Sup-
pose Ii has a mean PiE[K] and a variance P 2

i σ2
K . For

voice users, MAI is an SRD process where the central
limit theorem also applies to the time-scaled process
beyond some small T . Hence, IT

i still follows a Gaussian
distribution with mean PiE[K] and variance P 2

i σ2
K/ST

as predicted by the central limit theorem. However, for
data users, MAI is an LRD process and the central
limit theorem does not apply. Instead, IT

i approximates
a Gaussian distribution with the same mean PiE[K] but
a larger variance P 2

i σ2
K/S2−2H

T given that 0.5 < H < 1
[7], [8]. In other words, time-scaled process IT

i has a
variance decreasing slower with T , with a PDF

fIT
i
(x) =

1√
2πP 2

i σ2
K/ST

2−2H
e
− (x−PiE[Ki])

2

2P2
i

σK
2/ST

2−2H (7)

Examples of such Gaussian LRD processes include frac-
tional Brownian motion and fractional Gaussian noise
(FGN) processes in [13]. Note that, MAI may not be
approximated with a Gaussian process because of chan-
nel fading [5]. (However, as power control is normally
performed in CDMA networks, the effect of channel fad-
ing can be hided and the receiving power is roughly the
same for all the users. Therefore, such an approximation
is still valid.)

Simulation Results

To verify that the time-scaled MAI in a system with
LRD data traffic does have a slow decaying tail dis-
tributions and in particular it approximates a Gaussian
distribution with a larger variance, we simulate two
CDMA systems, one with data users and the other with
voice users.

We simulate 250 ON/OFF users with maximum uplink
speed of 64kbps in both of the two CDMA systems.
Suppose that each of the ON/OFF users has an average
activity factor of 0.4, i.e., the average ratio between an
ON and an OFF period is 0.4/0.6. For heavy tailed data
users, we assume that the average data size transmitted
during ON period is 20KB, which is equivalent to an ON
period of 2.5 seconds (at 64kbps); while for voice users,
the average ON period is 70ms. Each simulation runs
for 100 seconds and a sampling is taken for every bit
transmitted. In the simulation, the distributions of MAI
are based on total 6.4 × 106 samplings.

Fig. 1 illustrates the distributions of instantaneous
MAI Ii and time-scaled MAI IT

i , which roughly follow
the Gaussian distribution as in Eq. (7). As T increases,
the variance of IT

i for voice users in Fig. 1(a) decreases
faster than that for data users in Fig. 1(b).

The tail distributions of Ii and IT
i are illustrated in Fig.

2. The tail probability for data users shown in Fig. 2(b)
is in general larger than that for voice users in Fig. 2(a),
especially when T is large as predicted by Eq. (6). In
other words, Ii for data users is an LRD process and its
corresponding time-scaled process has a slower decaying
tail distribution.

The above simulation results clearly back up the claim
based on our analysis. In other words, they show that in
a practical setting, the claim that the time-scaled MAI in
a system with LRD data traffic approximates a Gaussian
distribution with a slow decaying tail distributions is
indeed true. However, note that we do not claim that
the Eqs. (6) and (7) can accurately determine the exact
tail distribution and variance due to the difficulties in
obtaining the exact values of the parameters used in these
equations.

B. LRD Impact on SINR

We now develop formulas to show that time-scaled
SINR also has a slow decaying tail distribution, and then
verify this claim using simulation results.

The SINR for an active user i at the u-th sampling is
defined as

SINRi(u) =
Pi/Ri

N0(u) + 1
W

∑N
j=1,j �=i PjXj(u)

, (8)

where W is the spreading signal’s bandwidth and N0(u)
is the instantaneous sampling receiving power of the
white Gaussian noise. In general, the SINR measured
in a finite time scale T is of interest for performance
evaluation in a CDMA system. For voice users, SINR
can be usually expressed in terms of long term average
measurement of noise E[N0] and the number of active
users E[Ki] [1] because the short term average value
can be well approximated with the long term average
value. However, this is not true for data users. Note that
although [5] uses the instantaneous (as well as time-
scaled) SINR (in Eq. (8) of [5]), the Gaussian noise
inside the SINR expression is still approximated with
its long term average value σ2

n, which is not accurate
enough to characterize the statistics of instantaneous (as
well as time-scaled) SINR.

In the appendix of this paper, we prove that the time-
scaled SINR has a “Gaussian-like” distribution in a large
enough time scale, whose PDF can be approximated as:

fT
SINRi

(z) � 1√
2πV ar[hT ]|z|

e
− ( 1

z
−E[hT ])2

2V ar[hT ] (9)

where hT is a variable decided by both time-scaled noise
NT

0 and time-scaled MAI (or equivalently the number
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Fig. 2. Tail distribution of MAI

of active users KT
i ). In particular, from the PDF of

SINRT , we can see that the variance of SINRT is
related with the variance of hT , which is consequently
related with the variance of both time-scaled noise and
MAI.

We also prove in the appendix of this paper that SINR
has a self-similar correlation structure. Accordingly, the
time-scaled SINR has a slow decaying tail distribution
which is approximated as:

Pr{SINRT
i > E[SINRT

i ]+x} ∼ Ce
−µ(

PiGi

E2[SINRT
i

]
)ν(xST )ν

(10)
Eq. (10) indicates that SINRi is WBB process. The
only difference of the WBB SINR in Eq. (10) from the
WBB MAI in Eq. (6) is that the decay rate of SINR is
( PiGi

E2[SINRT
i ]

)ν times of the decay rate of MAI.

Simulation Results

To verify the claim based on the above analysis, we
use the same simulation setting as that described in
Section III-A. Below, we present the simulation results
for CDMA systems with low Gaussian noise only, and

omit those with high Gaussian noise. The omission is
due to both space limit and the fact that the results with
high Gaussian noise are trivial in that both SINR for data
users and voice users have similar Gaussian distributions
since Gaussian noise is the dominant factor in SINR and
is independent of user behaviors.

For the case where Gaussian noise is low, we set the
noise σ2

n as only one hundredth of the signal power, i.e.,
σ2

n = 0.01P as shown in Fig. 3. In this case, MAI is the
dominant factor in SINR, and the distribution of SINRT

is affected mostly by IT and its variance decreases with
T . In particular, since the variance of IT for data users
decreases slower with T than that for voice users, the
variance of SINRT shows the same trend as predicted
by Eq. (9).

C. Outage Probability

In this subsection, we show that due to the slower
decaying tail distribution of time-scaled SINR for data
users, the outage probability for data users will be higher
than that for voice users.
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Fig. 3. Distribution of SINR, with low noise σ2
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The outage probability of a CDMA system is ap-
proximated as the probability that the average SINR
in a (packet) transmission period Tp (with STp

sam-
plings) is smaller than a minimum threshold SINR0 =
E[SINR] − x (0 < x < E[SINR]). The outage
probability is calculated as:

Prout = Prob{SINRTp(v) < E[SINRi] − x}

∼ Ce
−µ(

PiGiSTp

E[SINRi](
E[SINRiS]

x
−1)

)ν

(11)

which decays slowly with T for data users with 0 < ν <
1. Therefore, it is expected that the outage probability is
generally larger than that of the voice users. In particular,
when x � E[SINRi], Eq. (11) approximates to a
Weibull bound as

Prout ∼ Ce
−µ(

PiGi
E2[SINRi]

)ν(xSTp)ν

. (12)

Simulation Results
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Fig. 4. Outage probability (Tp=72ms)

Fig. 4 illustrates the outage probabilities for voice
users and different data users with packet transmission

time Tp � 72ms (or with equivalent packet size of
576KB). We can see that, in general, data users have
a higher outage probability than voice users. Among
different data users, the larger the Hurst parameter H in
the LRD MAI, the higher the outage probability, which
agrees with the trend predicted in our analysis results in
Eq. (11).

Fig. 5 illustrates the outage probabilities for differ-
ent packet transmission times, i.e., 5ms, 72ms, 130ms,
175ms (which are corresponding to packet sizes of 40
bytes, 576 bytes, 1040 bytes and 1500 bytes). The outage
probability for data users in Fig. 5(b) is larger than
that for voice users in Fig. 5(a). It is also shown that
increasing Tp can reduce the outage probability for voice
users, which indicates that better performance can be
achieved if voice packets are transmitted in aggregation.
However, the outage probabilities are similar for data
users and have little dependence on the values of Tp.
This is because the outage probabilities predicted by Eq.
(11) for the above Tp values have little difference due to
a small ν = 2 − 2H = 0.2.

IV. PREDICTION ON THE NUMBER OF ACTIVE USERS

Although LRD data traffic tends to degrade the per-
formance of a CDMA network, one may also harness
long range dependency by designing protocols that can
take advantage of the autocorrelation of an LRD process.
More specifically, in a CDMA network dominated by
LRD data traffic, the autocorrelation of MAI or SINR
across many time scales can be used to predict the
number of active users K or MAI, which in turn can be
used in rate control and Call Admission Control (CAC)
to improve the network performance. In this section, we
propose a Variable Period (VP) prediction and compare
it with the prediction proposed in [4], [5], which we call
Fixed Period (FP) prediction.
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A. Fixed Period Prediction

We first review a multi-period MAI prediction scheme
which we call Fixed Period (FP) prediction, which was
proposed in [4], [5]. The FP scheme predicts the time-
scaled MAI, ITm(v+1) in a prediction window Tm based
on a fixed number of measured (or historical) time-scaled
MAI. Since Tp is the typical time scale to calculate the
outage probability as defined in Eq. (11), the time-scaled
MAI measured in Tp (with multiple bit samplings) is
used to predict time-scaled MAI in Tm. A prediction
window Tm is usually larger than Tp, and ITm is the
average of multiple ITp’s measured in Tm (see Fig. 6),
which is predicted as

ÎTm(v + 1) =
1
m

(v+1)m∑
u=vm+1

ITp(u). (13)

Based on such a multi-period MAI prediction, the
average number of active users in the (v + 1)-th Tm

can also be predicted similarly as

K̂Tm(v + 1) =
1
m

(v+1)m∑
u=vm+1

KTp(u), (14)

where KTp(u) is the time-scaled K during the transmis-
sion of the u-th packet. We call the above prediction for

K or MAI as Fixed Period (FP) prediction because the
number of historical values used for prediction is fixed
as m and each of the m historical values contributes to
the prediction with the same fixed weight 1/m. Note that
the system needs to store up to m historical measured
values for FP prediction.

B. Variable Period Prediction

In this subsection, we propose a new multi-period pre-
diction which is called Variable Period (VP) prediction.
VP predicts the next time-scaled value in Tm based on all
historical values available (not just m historical values as
in FP). Each historical value contributes to the prediction
with an appropriate weight, i.e., usually a more recently
measured value is associated with a larger weight. In
addition, VP takes consideration of the autocorrelation
in multiple time scales , i.e., autocorrelations in packet
transmission time Tp and in prediction window Tm. This
is because the autocorrelation in multiple time scales
for an LRD process is more significant than that for an
SRD process. The VP prediction on K has two steps as
described next.

Suppose KTp(v, j) is the time-scaled K measured at
the j-th Tp of the v-th prediction window Tm. In VP
prediction, we first calculate a weighted time-scaled K
based on KTp(v, j) as

K̃Tp(v, j) = (1− 1
jα

)K̃Tp(v, j−1)+
1
jα

KTp(v, j) (15)

and K̃Tp(v, Tm

Tp
) is defined to be the weighted time-

scaled K in the v-th Tm, which is the last value cal-
culated from Eq. (15) when j is set to Tm

Tp
. KTm(v + 1)

is then predicted based on K̃Tp(v, Tm

Tp
) and K̂Tm(v) as

K̂Tm(v+1) = (1− 1
vβ

)K̂Tm(v)+
1
vβ

K̃Tp(v,
Tm

Tp
) (16)
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where α and β are constant parameters decided by the
correlation coefficients between the predicted value and
the measured values. With the above two-step prediction,
time-scaled K in both Tp and Tm are taken into consider-
ation in the prediction. In addition, the weight of K(v, j)
is adjusted (decreased) in each prediction, and more
recently measured K(v, j) has a larger final weight in
the prediction of K̂Tm(v +1). Another advantage of VP
prediction is that it is a recursive prediction, with which
the system only needs to remember the latest calculated
K̃Tp(v, j) and K̂Tm(v). Therefore, VP consumes much
less memory (which only needs O(1) system memory)
than FP (which has to store m historical values and needs
O(m) system memory).

VP can also be extended to MAI prediction as well.
The prediction on K can be used in rate control and CAC
to enhance the network performance as to be shown later
in this paper.

C. Simulation Results

In this subsection, we evaluate the prediction accuracy
of the proposed VP for data and voice users, respectively,
and also compare VP with other existing schemes. In this
simulation, we use the same setting as that described in
Section III-A having 250 ON/OFF users with average
activity factor of 0.4 (please refer to that section for more
details). The Gaussian noise in the system is assumed to
be 1/10 of the transmitted signal strength, i.e., N0 =
0.1P .

To evaluate the performance of VP, we use a similar
prediction accuracy formula as Eq. (26) in [4]:

accuracy = 1 − 1
Np

Np∑
v=1

| ˆK(v) − K(v)|
K(v)

(17)

where Np is the total number of predictions carried out
in the simulation.

Fig. 7 illustrates the accuracy of FP, VP and the
prediction based on the long term average value (shown
as “EP” in the figure). We can see that EP has higher
accuracy for voice users than that for data users (which
are associated with a Hurst parameter of 0.9 in the
simulation). This is because the average number of active
voice users in Tm (or KTm) approaches its long term
mean value E[K] quickly as Tm increases with a smaller
variance than that of data users. With a reasonable Tm

between 2 and 10 seconds2, FP and VP have higher
prediction accuracy than EP for data users only, and in
particular, VP generally has higher accuracy than FP.

2The predict window Tm in [4], [5] is 2 or 3 seconds
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Fig. 7. Prediction accuracy

This is due to the fact that data users have LRD K,
whose strong autocorrelation facilitates the prediction in
FP and VP, and in particular, VP makes the best use
of the autocorrelation crossing multiple time scales with
appropriate weight assignments.

V. RATE CONTROL

In this section, we describe how rate control works
with the proposed VP, and evaluate the outage and
throughput performance of VP, FP, and EP respectively,
when used in conjunction with rate control and compare
the performances of CDMA systems with data users and
voice users, respectively.

Rate control is used for interference management to
achieve the optimal performance among existing users
in a CDMA system. The base station sends rate control
signals to mobile users according to its predicted MAI
in window Tm. If the predicted MAI is weak, users
can increase their transmission rates to achieve a higher
throughput; Otherwise if the predicted MAI is strong,
users should decrease their transmission rates to avoid
high outage probability.

In order to achieve a target average user throughput
and a target outage probability, we assume that a CDMA
system can tolerate an average interference level mea-
sured at a time window Tm up to ITm

0

ITm

0 =
1

STm

Pm

t+STm∑
u=t

j=N∑
j=1

Xj(u)
Rj

Rm
= PmKTm

m (18)

where Rm is the maximum rate supported in the upper
link and Pm is the corresponding transmission power.
In other words, the (equivalent) number of active users
(transmitting at maximum rate Rm) that can be supported
by the system at a time window Tm is KTm

m . In the rate
control of the CDMA system, we adjust the rate of each
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user according to the predicted KTm using the following
criteria:

1) If K̂Tm(v + 1) < KTm
m − γu, then increase the

transmission rate of each user j with

∆Rj =
[KTm

m − γu − K̂Tm(v + 1)]
K̂Tm(v + 1)

Rj

2) If K̂Tm(v + 1) > KTm
m + γl, then decrease the

transmission rate of each user j with

∆Rj =
[K̂Tm(v + 1) − KTm

m − γl]
K̂(v + 1)

Rj

Here both γl and γu are constant thresholds.

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Tm (second)

O
ut

ag
e 

P
ro

ba
bi

lit
y

EP (voice)
FP (voice)
VP (voice)
EP (data)
FP (data)
VP (data)

Fig. 8. Outage probability with rate control
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Fig. 9. Average user throughput with rate control

The simulation results are shown in Fig. 8 and 9 in
terms of outage probability and average user throughput
(for active users). The throughput for a user i is defined
as

B̂i =
1

Nsim

NSim∑
v=0

sgn(SINRTp(v)i − SINR0)Ri,

(19)
where Nsim is the total number of packets transmitted by
user i during its ON period throughout the simulation,

and sgn(.) is a function defined as

sgn(x) = { 1, when x > 0
0, otherwise

In the simulation, a system with rate control based
on EP is equivalent to that without rate control. We can
see that rate control based on both FP and VP schemes
can enhance the performance greatly for data users. In
particular, VP outperforms FP with higher average user
throughput and lower outage probability.

VI. CALL ADMISSION CONTROL

In this section, we describe how call admission control
(CAC) works with the proposed VP, and evaluate the
outage and throughput performance of VP, FP, and EP
respectively, when used in conjunction with CAC and
compare the performances of CDMA systems with data
users and voice users, respectively.

For a CDMA system with voice users, CAC is usually
based on the average network capacity, or the average
number of users M0 that the system could support given
a minimum SINR threshold SINR0 or the maximum
number of active users K0 [1], [15], i.e.,

K0 = 1 +
G

SINR0
− WN0

P
(20)

and M0 is calculated based on K0 as:

M0 = 1+
1

E[X]
(K0−1) = 1+

1
E[X]

(
G

SINR0
−WN0

P
)

(21)
where E[X] is the average activity indicator of the users.
In a CAC without prediction, new users are admitted if
N < M0, or equivalently if E[K] < K0. Such a CAC
is equivalent to the CAC that always predicts the future
number of active users K as E[K]. This is valid for
voice users whose KTm approaches E[K] quickly with
a relatively small variance. However, KTm still has a
relatively large variance, and predicting K as E[K] is
not accurate for data users. For example, if a system
has a total number of users N < M0 but the number
of active users KTm > K0, admitting a new user could
degrade the SINR of the new user as well as existing
users.

In this section, we propose a CAC based on an ex-
tended VP prediction for data users as shown in Fig. 10.
Our CAC uses a predicted average K in a sliding window
τ , which is equivalent to average user life time (e.g., 5
minutes), to predict the average SINR of a new user. A
new user is admitted into the system if the predicted
average SINR is larger than the minimum threshold
SINR0, or equivalently if the predicted K is less than
the maximum K0, i.e., K̂τ < K0. Otherwise, the request
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Fig. 10. Call admission for data users based on VP

will be buffered and the prediction is performed again in
the next sliding window after a Tm interval. If the new
user cannot be admitted within a given maximum CAC
delay, then it will be rejected.

With a CAC based on FP, the performance (in terms
of theoretical throughput calculated based on SINRTp

in [5]) of the new user is predicted based on the
measured MAI (or K) in the τ just prior to making
admission decisions. However, as K is an LRD process
exhibiting autocorrelation across multiple time scales,
the calculation based on measurements in one window
τ may not be sufficient. In this section, we extend our
VP prediction proposed earlier in Section IV with a third
step prediction for CAC, i.e., prediction in time scale τ
as

K̂τ (w + 1) = (1 − 1
wγ

)K̂τ (w) +
1

wγ
K̂Tm(w,

τ

Tm
)),
(22)

where ˆKTm(w, τ
Tm

) is the last predicted KTm in the w-
th τ , and γ is a constant decided by the autocorrelation
in K̂τ . With the extended VP, the prediction uses the
measured K in all previous sliding windows instead of
using just one sliding window as in FP.

A. Simulation Results

In this section, we compare the average active user
throughput defined in Eq. (19) and outage probability
of the CDMA system with CAC based on the three
prediction schemes, i.e., EP, FP and VP. Note that for a
CAC based on EP, the system always keeps N = M0 =
250 users in the system regardless of their activity status.

Figs. 11 and 12 illustrate the outage probability and
average user throughput of the CDMA system with CAC
based on different prediction schemes. CAC based on EP
always has lower average outage probability and higher
throughput for voice users than that for data users. This
is because time-scaled K for voice users has a smaller
variance. Therefore, voice users have a higher prediction
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accuracy than data users when predicting KTp with its
mean value E[K]. However, CAC based on FP or VP
enhances throughput and reduces outage probability for
both data users and voice users. Specifically, for data
users, CAC based on VP achieves higher throughput and
lower outage probability as it can predict time-scaled K
more accurately than FP.

VII. CONCLUSIONS

In this paper, we have studied the impact of long range
dependency on the performance of a CDMA network
including MAI, SINR and outage probability. It has
been demonstrated through analysis and simulations that
the time-scaled MAI and SINR in a CDMA system
with data users have the same Gaussian or Gaussian-
like distributions as those with voice users, but with
slower decaying tail distributions and larger variances.
Accordingly, the outage probability is higher in a CDMA
system with data users. To harness the autocorrelation of
MAI and SINR in a CDMA system with data users, a
variable period (VP) prediction has also been proposed
for such a CDMA system according to the fact that
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the number of active users or MAI has autocorrelations
across multiple time scales. The performance of VP has
been compared with existing schemes including fixed
period prediction proposed in [4], and VP prediction has
been demonstrated to be more accurate. We have also
applied VP prediction to rate control and call admission
control and shown that better system performance in
terms of lower outage probability and higher average
user throughput can be achieved using the proposed
scheme.
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APPENDIX

In this appendix, we prove that the time-scaled SINR is
approximately “Gaussian-like” distributed for a CDMA system
with either data users or voice users. And we also prove that
the SINR is an LRD process and its corresponding time-scaled
process has slow-decaying tail distributions.

With power control, SINR for user i at the uth sampling in
Eq. (8) is rewritten as

SINRi(u) =
Gi

N0(u)W/Pi +
∑N

j=1,j �=i Xj(u)Rj

Ri

=
Gi

N0(u)W/Pi + Ki(u)
(23)

where Gi = W/Ri is the processing gain for user i. The
autocorrelation of SINRi is then defined as

rSINR(m)

= E[
Gi

N0(u)W
Pi

+ Ki(u)
× Gi

N0(u+m)W
Pi

+ Ki(u + m)
]

=
G2

i
E[N0]2W 2

P 2
i

+ 2E[K]E[N0]W
Pi

+ E[Ki(u)Ki(u + m)]

=
G2

i
E[N0]2W 2

P 2
i

+ 2E[K]E[N0]W
Pi

+ rK(m)
(24)

Assume that NT
0 (v) and KT

i (v) are time-scaled noise and
time-scaled number of active users. The average SINR in time
scale T is calculated based on the values of NT

0 (v) and KT
i (v)

as

SINRT
i (v) =

Gi

NT
0 (v)W/Pi + KT

i (v)
(25)

which is called (equivalent) time-scaled3 SINR. Its autocorre-
lation is

rT
SINRi

(m) = E[SINRT
i (v)SINRT

i (v + m)]

= E[
Gi

NT
0 (v)W

Pi
+ KT

i (v)
× Gi

NT
0 (v+m)W

Pi
+ KT

i (v + m)
]

=
G2

i
E[N0]2W 2

P 2
i

+ 2E[N0]E[K]W
Pi

+ E[KT
i (v)KT

i (v + m)]

=
G2

i
E[N0]2W 2

P 2
i

+ 2E[N0]E[K]W
Pi

+ rT
K(m)

(26)

Since K is an LRD process, we have rT
K(m) = rK(m).

Therefore, the above Eq. (26) is the same as Eq. (24), i.e.,
rT
SINR(m) = rSINR(m). Therefore, SINR is analogously an

LRD process because its time-scaled process has similar au-
tocorrelation as its instantaneous process (as an LRD process
does), but with a slight different definition of time-scaled SINR
from Eq. (1).

3Note that here the (equivalent) time-scaled SINR is different from
the definition of time-scaled process in Eq. (1)
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The PDF of SINRT
i is:

fT
SINRi

(z) = Pr{ Gi

NT
0 W/Pi + KT

i

= z}

= Pr{ 1
KT

i

Gi
+ NT

0 W

GiPi

= z} (27)

Suppose that n(u) is the Gaussian noise amplitude from one
sampling, which follows a normal distribution of N(0, σ2

n).
Then N0(u) = n2(u) is the noise power per frequency
obtained from that sampling, which follows an Chi-Square
distribution, i.e.,

fn2(x) =
1√

2πxσn

e
− x

2σ2
n (28)

with mean E[N0] = σ2
n and variance V ar[N0] = 2σ4

n. Let

N ′T
0 = NT

0 W
GiPi

with PDF fT
N ′

0
(x) and let K ′T

i = KT
i

Gi
with PDF

fT
K′

i
(x). Suppose function hT (KT

i , NT
0 ) = KT

i

Gi
+ NT

0 W
GiPi

=
K ′T

i + N ′T
0 has a PDF fT

h (x), which is the convolution of
fT

K′
i
(x) and fT

N ′
0
(x), i.e.,

fT
h (x) =

∫ ∞

−∞
fT

K′
i
(u)fT

N ′
0
(x − u)du (29)

then the PDF of SINRT
i is expressed as the following Eq.

(30) [14]:

fT
SINRi

(z) =
1
|z|f

T
h (

1
z
) (30)

Eq. (30) applies to both instantaneous SINR and time-scaled
SINR. To calculate the PDF of instantaneous SINR, we first
obtain the PDF of instantaneous K′

i and N ′
0 as

fK′
i
(x) = fKi

(Gix) × Gi =
Gi√
2πσ2

K

e
− (Gix−E[Ki])

2

2σ2
K (31)

fN ′
0
(x) = fn2(

GiPix

W
)× GiPi

W
=

√
GiPi√

2πWxσn

e
−GiPix

2W σ2
n (32)

fSINRi
(z) is then rewritten from Eq. (30) as:

fSINRi
(z) =

1
|z|

∫ ∞

−∞

Gi√
2πσ2

K

e
− (Giu−E[Ki])

2

2σ2
K

×
√

GiPi√
2πW ( 1

z − u)σn

e
−GiPi(

1
z
−u)

2W σ2
n du (33)

To calculate the PDF of time-scaled SINR from Eq. (30),
we need to obtain the distribution of both N ′T

0 and K ′T . Since
the white Gaussian noise is an independent process, as T
increases, N ′T

0 approaches Gaussian distribution according to
the central limit theorem with mean E[NT

0 ] = Wσ2
n/PiGi and

variance V ar[N ′T
0 ] = 2W 2σ4

n/P 2
i G2

i ST . While K ′T
i follows

a Gaussian distribution with mean E[K′T
i ] = E[K]/Gi and

variance V ar[K ′T
i ] = σ2

K/G2
i S

2−2H
T . Similar to IT

i , the
variance of K ′T

i is the same as that predicted by the central
limit theorem only when Ki is SRD with voice users (i.e.,
H = 0.5); For data users (i.e., 0.5 < H < 1), the variance is
larger than that predicted by the central limit theorem. Since
both K ′T

i and N ′T
0 follow Gaussian distributions, and also

because K ′T
i and N ′T

0 are independent of each other, the sum
of the K ′T

i and N ′T
0 still follows a Gaussian distribution with

mean

E[hT ] = E[K ′T
i ] + E[N ′T

0 ] =
E[K]
Gi

− σ2
nW

GiPi
(34)

and variance

V ar[hT ] = V ar[K ′T
i ] + V ar[N ′T

0 ]

=
σ2

K

G2
i ST

2−2H
+

2W 2σ4
n

G2
i P

2
i ST

(35)

Therefore, the PDF of SINRT
i in Eq. (30) can be approxi-

mated as:

fT
SINRi

(z) � 1√
2πV ar[hT ]|z|e

− ( 1
z
−E[hT ])2

2V ar[hT ] (36)

which we call as a “Gaussian like” distribution. Note that for
voice users, the impact of T on the variance shown in Eq. (35)
is more significant than that for data users. And in general, the
PDF of SINRT

i in Eq. (36) has a larger variance for data users
than that for voice users for any ST > 1.

Now we exam the tail distribution of SINRT , i.e.,
Pr{SINRT

i > E[SINRi] + x}, where x is the tail of
SINRT . Since Gaussian noise is an independent process, its
tail distribution decays quickly with T . With some large finite
time scale T , the tail probability of NT

0 can be ignored in the
tail distribution of SINRT , and the parameter NT

0 in SINRT

is approximated with its mean value σ2
n as,

Pr{SINRT
i (v) > E[SINRi] + x}

= Pr{ Gi

σ2
nW/Pi + KT

i (v)
> E[SINRi] + x}

= Pr{KT
i (v) <

Gi

E[SINRi] + x
− σ2

nW

Pi
}

= Pr{IT
i (v) < (

PiGi

E[SINRi]
− σ2

nW )

− PiGix

E[SINRi](E[SINRi] + x)
}

= Pr{IT
i (v) > E[Ii] +

PiGix

E[SINRi](E[SINRi] + x)
}

(37)

The last step of Eq. (37) is because IT
i has a symmetric

Gaussian distribution centered at E[Ii].
Since it has been proved that Ii is an WBB LRD process,

Eq. (37) can be simplified as follows

Pr{SINRT
i > E[SINRT

i ] + x} ∼

Ce

−µ(
PiGiST

E[SINRT
i

](1+
E[SINRT

i
]

x
)

)ν

(38)

With ν < 1 for data users, the tail distribution in Eq. (38)
decays slow with T , and the tail probability is larger than that
of the time-scaled SINR with voice users (ν = 1). In particular,
if x � E[SINRi], Eq. (38) approximates a Weibull bound as
in (10).


