
MODERN OPERATING SYSTEMS

Third Edition
ANDREW S. TANENBAUM

Chapter 6
Deadlocks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Preemptable and Nonpreemptable
Resources

• Non-sharable resource: the resource can be used by
only one process at a time

• A process may use a resource in only the following
sequence:

1. Request: If the resource cannot be granted, the
requesting process must wait until it can acquire the
resource.

2. Use: The process can operate on the resource.
3. Release: The process releases the resource.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Introduction To Deadlocks

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each
process in the set is waiting for an event
that only another process in the set can
cause.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Conditions for Resource Deadlocks
Necessary conditions for a deadlock to occur

1. Mutual exclusion: The resource is non-sharable.
2. Hold and wait: A process that is holding resources
can request new resources.
3. No preemption: A resource can be released only by
the process holding it.
4. Circular wait: There is a circular chain of two or
more processes, each of which is waiting for a
resource held by the next member of the chain.
5. All four conditions must simultaneously hold.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-3. Resource allocation graphs. (a) Holding a resource.
(b) Requesting a resource. (c) Deadlock.

Deadlock Modeling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Resource graph: a directed graph with two types of
nodes:
Processes (circles) and resources (squares)

Use resource graph to detect deadlocks

An example:
_ Three processes A, B, and C
_ Three resources R, S and T
_ Round robin scheduling

Using resource graph, we can see if a given
request/release sequence leads to deadlock:

Carry out the request and release step by step, check if
there is any circle after each step.

Deadlock Modeling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs
and how it can be avoided.

Deadlock Modeling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs
and how it can be avoided.

Deadlock Modeling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-4. An example of how deadlock occurs
and how it can be avoided.

Deadlock Modeling (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Modeling (5)

Strategies for dealing with deadlocks:
1. Just ignore the problem.
2. Detection and recovery. Let deadlocks

occur, detect them, take action.
3. Dynamic avoidance by careful resource

allocation.
4. Prevention, by structurally negating one

of the four required conditions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Ignoring Deadlocks

The Ostrich algorithm:

• Stick your head in the sand and pretend that
deadlocks never occur.

• Used by most operating systems, including UNIX.

• Tradeoff between convenience and correctness

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

An Example in Unix

An example of deadlock in UNIX:

• Process table has 100 slots
• 10 processes are running
• Each process needs to fork 12 subprocesses
• After each forks 9 subprocesses, the table is full
• Each original process sits in the endless loop: fork and

fail

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection
• In a system where a deadlock may occur, the system

must provide:
• An algorithm than exams the state of the system to

determine whether a deadlock has occurred
• An algorithm to recover from the deadlock

Detection
• Every time a resource is requested or released, check

resource graph to see if any cycles exist.
• How to detect cycles in a directed graph?
• Depth-first search from each node. See if any

repeated node. O(N) algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-5. (a) A resource graph. (b) A cycle extracted from (a).

Deadlock Detection with
One Resource of Each Type (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with
One Resource of Each Type (2)

Algorithm for detecting deadlock:
1. For each node, N in the graph, perform the

following five steps with N as the starting node.
2. Initialize L to the empty list, designate all arcs

as unmarked.
3. Add current node to end of L, check to see if

node now appears in L two times. If it does,
graph contains a cycle (listed in L), algorithm
terminates.
…

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with
One Resource of Each Type (3)

4. From given node, see if any unmarked
outgoing arcs. If so, go to step 5; if not, go to
step 6.

5. Pick an unmarked outgoing arc at random and
mark it. Then follow it to the new current node
and go to step 3.

6. If this is initial node, graph does not contain any
cycles, algorithm terminates. Otherwise, dead
end. Remove it, go back to previous node,
make that one current node, go to step 3.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-6. The four data structures needed
by the deadlock detection algorithm.

Deadlock Detection with Multiple
Resources of Each Type (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Detection with Multiple
Resources of Each Type (2)

Deadlock detection algorithm:
1. Look for an unmarked process, Pi , for which

the i-th row of R is less than or equal to A.
2. If such a process is found, add the i-th row of C

to A, mark the process, and go back to step 1.
3. If no such process exists, the algorithm

terminates.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-7. An example for the deadlock detection algorithm.

Deadlock Detection with Multiple
Resources of Each Type (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Recovery from Deadlock

Recovery
• Abort one process at a time until the deadlock cycle is

eliminated.
• A simpler way (used in large main frame computers):

Do not maintain a resource graph. Only periodically
check to see if there are any processes that have been
blocked for a certain amount of time, say, 1 hour. Then
kill such processes.

• To recover the killed processes, need to restore any
modified files. Keep different versions of the file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Recovery from Deadlock

• Recovery through preemption (take
the resource back)

• Recovery through rollback (to the
nearest checkpoint)

• Recovery through killing processes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance
Analyzing each resource request to see if it can be safely granted.

Resource trajectories: A model for two processes and two resources
• An example:
• Processes A and B
• Resources: printer and plotter
• A needs printer from I1 to I3
• A needs plotter from I2 to I4
• B needs plotter from I5 to I7
• B needs printer from I6 to I8
• Each point in the diagram is a joint state of A & B
• Can only go vertically or horizontally (one CPU)
• Start at point p, run A to point q, run B to point r, run A to point s, grant

printer, run B to point t, request plotter, can only run A to completion.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-8. Two process resource trajectories.

Deadlock Avoidance

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance
Find a general algorithm that can always avoid deadlock by
making right decisions.

Banker's algorithm for a single resource:
• A small town banker deals with a group of customers with

granted credit lines.
• The analogy:

• Customers: processes
• Units: copies of the resource
• Banker: O.S.
• State of the system: showing the money loaned and the

maximum credit available

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Avoidance
Safe state:
• There exists a sequence of other states that lead to all customers

getting loans up to their credit lines.

The algorithm:
• For each request, see if granting it leads to a safe state. If it does, the

request is granted. Otherwise, it is postponed until later.
• Check a safe state:

(1) See if available resources can satisfy the customer closest to his
maximum. If so, these loans are assumed to be repaid.
(2) Then check the customer now closet to his maximum, and so on.
(3) If all loans can be eventually paid, the current state is safe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-9. Demonstration that the state in (a) is safe.

Safe and Unsafe States (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-10. Demonstration that the state in (b) is not safe.

Safe and Unsafe States (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-11. Three resource allocation states:
(a) Safe. (b) Safe. (c) Unsafe.

The Banker’s Algorithm
for a Single Resource

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm
for Multiple Resources

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

•Processes must state their total resource needs before
executing

•n processes and m types of resources

•Two matrices:
Current allocation matrix
Request matrix
•Three vectors:
Existing resource: E = (E1, E2, …, Em)
Possessed resource: P = (P1, P2, …, Pm)
Available resource: A = (A1, A2, …, Am)

A = E - P

Figure 6-12. The banker’s algorithm with multiple resources.

The Banker’s Algorithm
for Multiple Resources

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm
for Multiple Resources

Algorithm for checking to see if a state is safe:
1. Look for row, R, whose unmet resource needs all

≤ A. If no such row exists, system will eventually
deadlock since no process can run to completion

2. Assume process of row chosen requests all resources
it needs and finishes. Mark process as terminated, add
all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes marked
terminated (initial state was safe) or no process left
whose resource needs can be met (there is a
deadlock).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm
for Multiple Resources

An example:

• Row D <= A, then A = A + (1101) = (2121)
• Row A <= A, then A = A + (3011) = (5132)
• Row B <= A, then A = A + (0100) = (5232)
• Row C <= A, then A = A + (1110) = (6342)
• Row E <= A, then A = A+(0000) = (6342) = E
• So, the current state is safe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Banker’s Algorithm
for Multiple Resources

Suppose process B requests a printer
• Now A = (1010)
• Row D <= A, then A = A + (1101) = (2111)
• Row A <= A, then A = A + (3011) = (5122)
• Row B <= A, then A = A + (0110) = (5232)
• Row C <= A, then A = A + (1110) = (6342)
• Row E <= A, then A = A+(0000) = (6342) = E
• So, the request is still safe.

If E requests the last printer.
• A = (1000)
• No row <= A, will lead to a deadlock.
• So E's request should be deferred.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Deadlock Prevention

• Use a protocol to ensure that the system
will never enter a deadlock state.

• Negating one of the four necessary
conditions.
1. Mutual exclusion
2. Hold and wait
3. No preemption
4. Circular wait

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking Mutual Exclusion
Condiiton

• Ensure that no resource is assigned exclusively to a
single process. Spooling everything.

• Drawback: not all resources can be spooled (such as
process table)

• Competition for disk space for spooling itself may lead
to deadlock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking Hold and Wait Condition

• Process requires all its resources before starting

• Problem: processes may not know how many
resources needed in advance; not an optimal
approach of using resources (low utilization)

• A variant: a process requesting a resource first
temporarily releases all the resources it holds. Once
the request is granted, it gets all resource back.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking No Preemption Condition

• Forcibly take away the resource. Not realistic.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking the
Circular Wait Condition

• Solution 1: A process is entitled only a single resource
at any time.

• Solution 2: Global numbering all resources:
Give a unique number to each resource. All requests
must be made in a numerical order

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Attacking the
Circular Wait Condition

• An example: Two processes and five devices. Number the resources
as follows:
(a) Imagesetter
(b) Scanner
(c) Plotter
(d) Tape drive
(e) CD-ROM drive

• Assume process A holds i and process B holds j (i \= j).
• If i > j, A is not allowed to request j.
• If i < j, B is not allowed to request i.
• Suitable to multiple processes. At any time, there must be a assigned

resource with the highest number. This process will not request other
assigned resources, only requests higher numbered resource and
finishes. Then releases all resources.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-13. (a) Numerically ordered resources.
(b) A resource graph.

Attacking the
Circular Wait Condition

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 6-14. Summary of approaches to deadlock prevention.

Approaches to Deadlock Prevention

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Approaches to Deadlock Prevention

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Problems:

(1) Process don't know the maximum resources they need in
advance
(2) The number of processes is not fixed
(3) Available resources may suddenly break

In summary,
Prevention: too overly restrictive
Avoidance: required information may not be available
Still no good general solution yet.

Figure 6-15. A resource deadlock in a network.

Communication Deadlocks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	MODERN OPERATING SYSTEMS��Third Edition�ANDREW S. TANENBAUM���Chapter 6�Deadlocks
	Preemptable and Nonpreemptable Resources
	Introduction To Deadlocks
	Conditions for Resource Deadlocks
	Deadlock Modeling (1)
	Deadlock Modeling
	Deadlock Modeling (2)
	Deadlock Modeling (3)
	Deadlock Modeling (4)
	Deadlock Modeling (5)
	Ignoring Deadlocks
	An Example in Unix
	Deadlock Detection
	Deadlock Detection with �One Resource of Each Type (1)
	Deadlock Detection with �One Resource of Each Type (2)
	Deadlock Detection with �One Resource of Each Type (3)
	Deadlock Detection with Multiple Resources of Each Type (1)
	Deadlock Detection with Multiple Resources of Each Type (2)
	Deadlock Detection with Multiple Resources of Each Type (3)
	Recovery from Deadlock
	Recovery from Deadlock
	Deadlock Avoidance
	Deadlock Avoidance
	Deadlock Avoidance
	Deadlock Avoidance
	Safe and Unsafe States (1)
	Safe and Unsafe States (2)
	The Banker’s Algorithm �for a Single Resource
	The Banker’s Algorithm �for Multiple Resources
	The Banker’s Algorithm �for Multiple Resources
	The Banker’s Algorithm �for Multiple Resources
	The Banker’s Algorithm �for Multiple Resources
	The Banker’s Algorithm �for Multiple Resources
	Deadlock Prevention
	Attacking Mutual Exclusion Condiiton
	Attacking Hold and Wait Condition
	Attacking No Preemption Condition
	Attacking the �Circular Wait Condition
	Attacking the �Circular Wait Condition
	Attacking the �Circular Wait Condition
	Approaches to Deadlock Prevention
	Approaches to Deadlock Prevention
	Communication Deadlocks

