
MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 3
Memory Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-1. Three simple ways of organizing memory with an
operating system and one user process.

No Memory Abstraction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-2. Illustration of the relocation problem.

Multiple Programs Without Memory
Abstraction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-3. Base and limit registers can be used to give each
process a separate address space.

Base and Limit Registers

Figure 3-4. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Swapping (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-5. (a) Allocating space for growing data segment. (b)
Allocating space for growing stack, growing data segment.

Swapping (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management with Bit Maps

Part of memory with 5 processes, 3 holes
– tick marks show allocation units
– shaded regions are free
– Corresponding bit map
– Same information as a list

Figure 3-7. Four neighbor combinations
for the terminating process, X.

Memory Management with Linked Lists

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-8. The position and function of the MMU – shown as
being a part of the CPU chip (it commonly is nowadays).

Logically it could be a separate chip, was in years gone by.

Virtual Memory – Paging (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging (2)

Figure 3-10. The internal operation of the MMU with
16 4-KB pages.

Paging (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-11. A typical page table entry.

Structure of Page Table Entry

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging implementation issues:

• The mapping from virtual address to physical
address must be fast.

• If the virtual address space is large, the page table
will be large.

Speeding Up Paging

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-12. A TLB to speed up paging.

Translation Lookaside Buffers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

Figure 3-13. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

Figure 3-14. Comparison of a traditional page table
with an inverted page table.

Inverted Page Tables

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Optimal page replacement algorithm
• Not recently used page replacement
• First-In, First-Out page replacement
• Second chance page replacement
• Clock page replacement
• Least recently used page replacement
• Working set page replacement
• WSClock page replacement

Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-15. Operation of second chance.
(a) Pages sorted in FIFO order.
(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

Second Chance Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-16. The clock page replacement algorithm.

The Clock Page Replacement
Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-17. LRU using a matrix when pages are referenced in the
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU Page Replacement Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-18. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks

are represented by (a) to (e).

Simulating LRU in Software

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-19. The working set is the set of pages used by the k
most recent memory references. The function w(k, t) is the

size of the working set at time t.

Working Set Page Replacement (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-20. The working set algorithm.

Working Set Page Replacement (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

When the hand comes all the way around to its
starting point there are two cases to consider:

• At least one write has been scheduled.
• No writes have been scheduled.

The WSClock Page Replacement Algorithm (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-21. Operation of the WSClock algorithm. (a) and (b) give
an example of what happens when R = 1.

The WSClock Page Replacement Algorithm (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-21. Operation of the WSClock algorithm.
(c) and (d) give an example of R = 0.

The WSClock Page Replacement Algorithm (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-22. Page replacement algorithms discussed in the text.

Summary of Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-23. Local versus global page replacement.
(a) Original configuration. (b) Local page replacement.

(c) Global page replacement.

Local versus Global Allocation Policies (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-24. Page fault rate as a function
of the number of page frames assigned.

Local versus Global Allocation Policies (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-25. (a) One address space.
(b) Separate I and D spaces.

Separate Instruction and Data Spaces

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-26. Two processes sharing the same program
sharing its page table.

Shared Pages

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-27. A shared library being used by two processes.

Shared Libraries

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• The hardware traps to the kernel, saving the
program counter on the stack.

• An assembly code routine is started to save the
general registers and other volatile information.

• The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page is needed.

• Once the virtual address that caused the fault is
known, the system checks to see if this address
is valid and the protection consistent with the
access

Page Fault Handling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context
switch takes place.

• When page frame is clean, operating system
looks up the disk address where the needed
page is, schedules a disk operation to bring it in.

• When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Page Fault Handling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

• Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

• This routine reloads registers and other state
information and returns to user space to
continue execution, as if no fault had occurred.

Page Fault Handling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-28. An instruction causing a page fault.

Instruction Backup

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-29. (a) Paging to a static swap area.

Backing Store (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-29. (b) Backing up pages dynamically.

Backing Store (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory management system is divided into
three parts:

• A low-level MMU handler.
• A page fault handler that is part of the kernel.
• An external pager running in user space.

Separation of Policy and Mechanism (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-30. Page fault handling with an external pager.

Separation of Policy and Mechanism (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A compiler has many tables that are built up as
compilation proceeds, possibly including:

• The source text being saved for the printed listing (on
batch systems).

• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point constants

used.
• The parse tree, the syntactic analysis of the program.
• The stack used for procedure calls within the compiler.

Segmentation (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-31. In a one-dimensional address space with growing
tables, one table may bump into another.

Segmentation (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-32. A segmented memory allows each table to grow or
shrink independently of the other tables.

Segmentation (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-33. Comparison of paging and segmentation.

Implementation of Pure Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-34. (a)-(d) Development of checkerboarding. (e)
Removal of the checkerboarding by compaction.

Segmentation with Paging: MULTICS (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-35. The MULTICS virtual memory. (a) The
descriptor segment points to the page tables.

Segmentation with Paging: MULTICS (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-35. The MULTICS virtual memory. (b) A segment
descriptor. The numbers are the field lengths.

Segmentation with Paging: MULTICS (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

When a memory reference occurs, the following
algorithm is carried out:

• The segment number used to find segment descriptor.
• Check is made to see if the segment’s page table is in

memory.
– If not, segment fault occurs.
– If there is a protection violation, a fault (trap) occurs.

Segmentation with Paging: MULTICS (6)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Page table entry for the requested virtual page
examined.
– If the page itself is not in memory, a page fault is

triggered.
– If it is in memory, the main memory address of the

start of the page is extracted from the page table entry
• The offset is added to the page origin to give the

main memory address where the word is located.
• The read or store finally takes place.

Segmentation with Paging: MULTICS (7)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-36. A 34-bit MULTICS virtual address.

Segmentation with Paging: MULTICS (8)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-37. Conversion of a two-part MULTICS address into a
main memory address.

Segmentation with Paging: MULTICS (9)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-38. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB more

complicated.

Segmentation with Paging: MULTICS (10)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-39. A Pentium selector.

Segmentation with Paging: The Pentium (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-40. Pentium code segment descriptor.
Data segments differ slightly.

Segmentation with Paging: The Pentium (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-41. Conversion of a (selector, offset)
pair to a linear address.

Segmentation with Paging: The Pentium (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-42. Mapping of a linear address onto a physical address.

Segmentation with Paging: The Pentium (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-43. Protection on the Pentium.

Segmentation with Paging: The Pentium (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57

